
ZU064-05-FPR jfp 13 May 2020 10:44

Under consideration for publication in J. Functional Programming 1

Typed Dataspace Actors

SAM CALDWELL and TONY GARNOCK-JONES and MATTHIAS FELLEISEN
Northeastern University, Boston, Mass.

(e-mail: samc@ccs.neu.edu)

Abstract

Actors collaborate via message exchanges to reach a common goal. Experience has shown, however,
that pure message-based communication is limiting and forces developers to use design patterns.

The recently introduced dataspace actor model borrows ideas from the tuple space realm. It
offers a tightly controlled, shared storage facility for groups of actors. In this model, actors assert
facts that they wish to share and interests in such assertions. The dataspace notifies interested parties
of changes to the set of assertions that they are interested in.

Although it is straightforward to add the dataspace model to untyped languages, adding a typed
interface is both necessary and challenging. Without restrictions on exchanged data, a faulty actor
may propagate erroneous data through a malformed assertion, causing an otherwise well-behaved
actor to crash—violating the key principle of failure-isolation. A properly designed type system can
prevent this scenario and rule out other kinds of uncooperative actors. This paper presents the first
structural type system for the dataspace model of actors; it does not address the question of behavioral
types for assertion-oriented protocols.

1 Coordinating Conversing Actors

Languages in the tuple space family (Gelernter, 1985; Carriero et al., 1994; Murphy et al.,
2006; Mostinckx et al., 2007) address the need for manageable sharing between concur-
rent components (Tasharofi et al., 2013).1 Generally speaking, these languages connect
concurrent processes to a storage medium, through which they communicate indirectly.
Rather than sending a message along a channel or to a mailbox, a process deposits it in
the central repository, from which another process may later retrieve it. This indirection
provides decoupling from identity (e.g. address or channel) and across time, allowing a
process to receive a message “sent” before its own creation.

Over the past few years, Garnock-Jones et al. (2014; 2016; 2017) have developed the
dataspace model, a promising addition to the actor family based on tuple spaces. Roughly
speaking, their dataspace actors utilize a storage medium for sharing knowledge among a
group of participants (see section 2 for a recap). A dataspace actor shares facts by asserting
them in this common space. These assertions remain associated with the actor. A dataspace
actor interested in facts states its interest in assertions about those facts. It is the dataspace’s
responsibility to inform an actor of the appearance and disappearance of facts in which it

1 The Blackboard idea (Newell & Simon, 1972; Englemore & Morgan, 1988) is a similar approach
to the problem in an object-oriented setting.

ZU064-05-FPR jfp 13 May 2020 10:44

2 S. Caldwell and T. Garnock-Jones and M. Felleisen

has stated interest. More precisely, the dataspace sends actors notifications of changes to
the state of facts, who in response may add or withdraw assertions or spawn other actors.
Finally, the dataspace withdraws an actor’s assertions by force when the latter raises an
exception.

We have implemented the dataspace model as extensions of ECMAScript (ECMA,
2015) and Racket (Flatt & PLT, 2010), and we have created several applications in these
extended languages. This experience shows that dataspaces are particularly well-suited for
situations where actors participate in several conversations at once and where many actors
participate in the same conversation:

• Assertions lend themselves towards group communication. New participants can
seamlessly join an ongoing conversation. Dataspace routing keeps each actor up-
to-date with a minimum of boilerplate.
• Dataspaces decouple actors from each other, allowing multicast communication with-

out the burden of maintaining a handle (address or channel) for each peer.
• The link between actor and assertion provides a uniform and powerful mechanism

for resource management in the presence of partial failure, a notoriously difficult
aspect of concurrent programming.

These features eliminate many design patterns necessitated by conventional coordination
mechanisms, say, in Erlang/OTP (Armstrong, 2003). The need for design patterns in tra-
ditional models becomes especially prevalent when code must deal with potentially faulty
actors. See section 2.2 for more details.

Unfortunately, implementations of the tuple space model, including dataspaces, have
largely been untyped or unityped—embedded in a typed host language in principle, but
circumventing the type system by assigning the same type to all messages and requiring
casts. This situation deprives programmers of the potential for type-based error prevention,
documentation, optimization, design, and so on. The decoupling of components and gen-
eral open-endedness of communication poses a challenge for type systems, which must
predict the shape of incoming data. Our experience has also drawn our attention to fault
isolation and scalability, two essential principles of actor programming, that suffer from
the absence of a type discipline:

• Localizing faults to the originating component is an important tool for developing
applications that detect and recover from exceptional situations. Typically, however,
only some errors receive this treatment, leaving others open to transmission between
actors via exchanged messages. Sadly, this can be as basic as a type mismatch in a
message, such as a faulty actor that sends a two-element tuple where the recipient
expects a two-element list. Only when the receiver tries to use that tuple as a list
is the mistake detected, but now the exception occurs inside an actor that works as
intended.
• Actor programming calls for concurrency—spawning an individual actor for each in-

dependent task. This philosophy implies certain architectural decisions for language
implementations. In particular, the potential for a great number of simultaneously
live actors means that they must share the underlying resources for computation,
such as CPUs and threads. And where there is sharing, there is potential for abuse.
Actors that take an overly-long time to respond to messages can deprive peers of

ZU064-05-FPR jfp 13 May 2020 10:44

Typed Dataspace Actors 3

their own share of time. In the worst case, the event handler of a running actor
never terminates, permanently hampering the system and potentially rendering it
unresponsive. Languages with type-based termination guarantees are a first step to
face this challenge.

However, providing a typed interface to dataspaces proves a challenge. Type systems, by
rule, control the exchange of data between components. By necessity, type system design is
intimately connected to the underlying semantics of data exchange, such as function call or
method dispatch. When a new communication medium is introduced, such as a dataspace,
it must be reconciled with the type system. Tuple space-style communication is particularly
challenging, because the decoupling of components and indirect communications make the
flow of data less apparent.

In response, we develop a structural type system that accounts for communication based
on dataspaces (see section 3). Our approach should be generalizable to other languages in
the tuple space family. With the type system in hand, programmers may enjoy the benefits
of both dataspaces and a type discipline. The type system for the base actor language
satisfies both a type soundness property and a termination guarantee (see section 4). Using
these theorems, we can finally verify the (type) soundness of a complete dataspace model
(see section 5). The properties of the model have a number of practical implications for
programming, as well as limitations (see section 6). A prototype implementation of our
type system confirms its basic usefulness, both in terms of convenience of use and of
programming support (see section 7).

2 Programming in the Dataspace Model

The dataspace model of actors is parameterized over the base language, that is, the lan-
guage for programming each individual actor. For an introduction using illustrative exam-
ples it is still best to use some concrete syntax. Here we use Racket syntax, falling back
on one of the two untyped prototype implementations. This section provides an overview
of the basic concepts (section 2.1), illustrates it with examples (sections 2.2 and 2.3), and
makes the case for introducing a structural type system (section 2.4).

2.1 Racket Dataspaces

In the dataspace model, an individual actor combines a private state with a behavior func-
tion. The private state is any piece of data from the underlying language. In a chat server
program, for example, a room-list may have the shape

(list "FBI" "CIA")

recording the name of each active chat room. Intuitively, an actor behaves as if it were a
function that maps events and the actor’s current state value to a new state value and some
instructions to carry out on its behalf:

Event×State→ State× Instructions

Instructions are interpreted by the surrounding dataspace, which connects actors with the
goal of enabling conversation and managing their state.

ZU064-05-FPR jfp 13 May 2020 10:44

4 S. Caldwell and T. Garnock-Jones and M. Felleisen

A dataspace equips a group of actors with a means of aggregating and sharing items of
information, called assertions. In our chat server dataspace, we create one actor for each
connection to an end user. This user-agent actor is responsible for relaying chat messages
and carrying out commands from the remote user. For example, a connected user under the
alias "Mo" may issue a request to join the room named "FBI". In response, the user’s agent
actor states the following assertion:

(in-room "Mo" "FBI")

In the syntax of our Racket prototype, this assertion is stated as a Racket struct form.
Racket structures are fixed-length tuples declared by the programmer, where the name
(in-room) serves as an identifying tag. When the user leaves the room, the user-agent
withdraws this assertion. Assertions range over basic values—numbers, strings, and so
on—as well as first-order, immutable data structures, including lists and program-specific
structures. Assertions have the same status in dataspace programs as facts in a Prolog
database (Clocksin & Mellish, 1981).

The dataspace model links an actor with its assertions in a particular way. An assertion
is read-only, and only the actor making an assertion may remove it. While multiple actors
may make identical assertions, dataspaces hide such redundancy by providing a set view of
an underlying bag of assertions. Additionally, the lifetime of an actor bounds the lifetime
of its assertions. When an actor terminates, the dataspace removes its current assertions.

In order to observe the appearance and disappearance of assertions, an actor makes an
assertion of interest. An assertion expressing interest in the above chat-room assertion uses
the built-in structure observe (figure 2 summarizes the extensions to base Racket):

(observe (in-room "Mo" "FBI"))

This particular assertion of interest could originate from an actor managing the room list.
The dataspace notifies this actor—and any other actor expressing interest—when the user-
agent asserts (in-room "Mo" "FBI"), and again when it withdraws the assertion.

Actors often assert interest in entire families of related assertions. For example, the
room-list actor tracks the presence of every user in the "FBI" room, not just "Mo". To
express interest in all such values, the actor uses the wildcard ? to assert

(observe (in-room ? "FBI"))

In response, the actor receives a notification each time a matching in-room assertion
appears or disappears. Semantically, a wildcard creates infinite sets of assertions; routing
of notifications can thus be understood in terms of set intersection.

Figure 1 provides a visual intuition for the chat server dataspace described thus far.
The "Mo" user has recently joined the "FBI" room. Accordingly, the user-agent actor
places an in-room assertion in the dataspace. Because the room-list actor’s assertions
include an expressed interest in in-room assertions, the dataspace routing mechanism duly
recognizes the overlap and sends an event.

An expression of interest is itself an assertion, observable by other actors. A common
use of this recursion concerns demand matching. An actor capable of matching demand
for c asserts (observe (observe c)), while actors interested in c assert (observe c).
The dataspace routing mechanism duly informs the first actor of the matching interest. In

ZU064-05-FPR jfp 13 May 2020 10:44

Typed Dataspace Actors 5

ro
om

-l
is
t

us
er
-a
ge
nt

routing
(observe (in-room ★ ★))

events

assertions

(in-room "Mo" "FBI")
(observe (in-room ★ "FBI"))

events

assertions

Fig. 1. Dataspace With Actors Engaged In a Conversation

response, it performs the computation to produce the assertion c. Finally, dataspace routing
again kicks in to notify the interested actor in the appearance of c.

Actors receive notification Events regarding changes to their dataspace’s assertions in
the form of a patch, which contains two sets. The first is a set of assertions newly added
to the dataspace matching the actor’s expressed assertions of interest. The second is a set of
relevant assertions that have been removed from the dataspace. Hence, the room-list actor
receives the notification

(patch {(in-room "Mo" "FBI")} /0)

when user "Mo" joins. When the user leaves the room the actor receives the corresponding
notification (patch /0 {(in-room "Mo" "FBI")}).2

Expressions between curly braces {e ...} create sets of assertions while actors analyze
incoming sets using project, which resembles set comprehension. Projection takes the
form (project [pattern set] body), as in

(project [(in-room $name "FBI") {(in-room "Mo" "FBI")}] name)

The pattern serves to filter and destructure assertions in set. Evaluation instantiates the
body of the project form once for each assertion in the set matching the given pattern,
yielding a list. Here, it yields (list "Mo"). In addition to binding variables, prefixed with
$, patterns may include the discard symbol which matches any value. Since assertion sets
may be conceptually infinite, some project expressions may yield infinite lists, as in
(project [$x {?}] x). The implementation signals an error when this happens.3 The
discard pattern is especially useful for analyzing such sets; the expression (project [

{?}] "match") yields the value (list "match").

2 Dataspaces additionally support message broadcast, though we focus here on communication
through assertions. Messages may be thought of as a special case of assertion-based
communication: sending a message atomically combines the assertion and immediate retraction of
its value, i.e., (message c) behaves roughly as (patch c /0) atomically followed by (patch /0 c).

3 An alternative interpretation is that of a diverging computation, instantiating x an infinite number
of times. Since these infinite sets are recognizable, we opt for signaling an error.

ZU064-05-FPR jfp 13 May 2020 10:44

6 S. Caldwell and T. Garnock-Jones and M. Felleisen

(dataspace expr) Launch a dataspace program with some initial actors
(actor expr expr expr) An actor with a behavior plus initial state and assertions
{ expr ... } Create a set of assertions
(observe expr) An assertion of interest
? Describes all possible assertions
(patch expr expr) Create a patch of two assertion sets
(transition expr expr) Update private state plus some instructions to perform
(quit expr) Termination with some final instructions
(project [expr pattern] expr) Iterate over the matching assertions in a set
$name Pattern that matches anything and binds it to name

Pattern that matches anything

Fig. 2. Extensions to Racket for Dataspace Programming

Actor behavior functions actually return values belonging to a disjoint sum, as opposed
to the simplistic product described above. The sum allows an actor to shutdown in an
orderly, non-exceptional manner. When an actor has fulfilled its purpose, it submits the
first form of response, a quit record, to the dataspace:

(quit instructions)

In response, the dataspace removes the actor, withdrawing each of its assertions, and carries
out some final instructions on its behalf. In the course of processing a notification, an
actor may raise an exception. Uncaught exceptions are translated to (quit empty) by the
dataspace sub-language.

The second form of return value makes or withdraws assertions via patch-es or aug-
ments the program with an entire new actor. In either case, the actor submits

(transition state instructions)

Such a transition record provides a new, updated private state for the actor and a list of
instructions for the dataspace to carry out, in order. An instruction might be a simple patch.
For example, the user represented by the "Mo" actor may issue a request to switch to the
"CIA" chat room. To this end, the "Mo" actor would update both its in-room assertion,
thus notifying other actors of the change, and its assertion of interest, allowing it to monitor
other users present in the new room. It accomplishes this goal with this transition:

(transition

"CIA"

(list (patch {(in-room "Mo" "CIA") (observe (in-room ? "CIA"))}
{(in-room "Mo" "FBI") (observe (in-room ? "FBI"))})))

The first item updates the actor’s private state value to "CIA", recording the user’s cur-
rent room. The transition provides a single instruction, a patch manipulating the actor’s
assertions. The first set in the patch places the assertion (in-room "Mo" "CIA") in the
dataspace as well as an assertion of interest in other users in the "CIA" room. The second
set in the patch withdraws the corresponding assertion of presence and interest for the
previous "FBI" room.

An actor might also request the creation of a new actor. A corresponding instruction is
an actor specification, which takes the form

(actor behavior state assertions)

ZU064-05-FPR jfp 13 May 2020 10:44

Typed Dataspace Actors 7

providing a description of the actor’s behavior function as well as its initial private state
and assertions.

Finally, the form

(dataspace actors)

launches a dataspace program with the given initial actors. Figure 2 summarizes the exten-
sions to Racket for dataspace programming.

2.2 Putting the Pieces Together

Figure 3 shows a sketch of the user-agent actor implementation for a chat room, plus some
of the context. The main function launches a dataspace with the described user-agent,
room-list, and any other potential actors. The actor’s initial state establishes the presence of
user "Mo" in room "FBI", as described above. The behavior of the actor analyzes patches
from the dataspace, projecting out the first slot from in-room assertions. The actor creates
a user-notification for each arriving and departing peer. Another actor, not depicted,
transforms such notifications into suitable network messages.

Highlighting Dataspaces The chat example illustrates several benefits of dataspace co-
ordination over pure message-passing. Garnock-Jones (2017) surveys the comparative ad-
vantage of dataspaces versus other concurrency paradigms in greater depth, using different
implementations of a similar chat example.

• The temporal duration of assertions, i.e. the fact that an assertion remains in the
dataspace until the originating actor withdraws it or terminates, allows new actors
to seamlessly join an ongoing conversation. When a new end user connects to the
chat server, the program spawns a new user-agent actor on its behalf. This new actor
expresses an interest in other members present in the current room. The interest
effectively acts as a query of existing matching assertions. In response, the dataspace
provides a description of all members present in the room.

• After joining a room and learning of existing members, the same assertion of interest
provides the user-agent with ongoing incremental knowledge updates. The actor
receives notification each time a current user leaves or a new user joins the room.

• Group communication simplifies the protocol and implementation of presence com-
munication. The user-agent actor makes a single assertion that informs every peer to
whom it is relevant. Assertions decouple actor identities. They allow communication
without knowing exactly which actor(s), or even how many, to address. In traditional
point-to-point models, a designated actor must maintain a collection of addresses
or channels to enable communication among the other actors. As Joe Armstrong,
designer of Erlang points out (Armstrong, 1994) (chapter 8.7), “If we want to send
a message to a process, then we need to know its PID. This is often inconvenient
since the PID has to be sent to all processes in the system that want to communicate
with this process.” In the same book (chapter 11), a similar multi-room chat example
requires an additional actor for each possible room to keep track of this information.

• The link between failure and communication provides a uniform and convenient
method for resource management in the presence of faulty actors. In this example,

ZU064-05-FPR jfp 13 May 2020 10:44

8 S. Caldwell and T. Garnock-Jones and M. Felleisen

Untyped
(define (main)

(dataspace
(list
(create-user-agent "Mo" "FBI")
(create-room-list ...)
...)))

(define (create-user-agent name initial-room)
(actor
;; behavior: notify the user as peers enter and
;; leave the current room.
(lambda (event current-room)
(define arrivals

(announce (patch-added event) current-room " arrived."))
(define departures

(announce (patch-removed event) current-room " departed."))
(transition current-room

(append arrivals departures)))
initial-room
{(in-room name initial-room)
(observe (in-room ? initial-room))}))

;; Create user-notification patches based on
;; presence assertions in an event.
(define (announce assertions current-room message)

(project [(in-room $who current-room) assertions]
(patch {(user-notification (string-append who message))} {}))

Fig. 3. A user-agent actor

we may consider the ability to communicate with a particular chat user as a resource.
As the availability of this resource is announced via assertion, it is automatically
tied to the lifetime of the corresponding actor. An exception in the actor results
in the withdrawal of the assertion, notifying interested peers. From the perspec-
tive of other user-agents, both orderly and exceptional termination convey the same
information—that a certain peer is no longer communicable. Other actors in the
system, meanwhile, can react in different ways, perhaps to clean up any associated
network connection(s).

2.3 The Role of Recursive Interest in Dataspace Protocols

Dataspace protocols benefit from the use of recursive subscriptions, that is, assertions of
interest in assertions of interest (and so on).

To illustrate the point, consider an “arithmetic service” dataspace. Assertions take the
form (sum x y z) where z = x + y. Clients of the service make requests by asserting
interest in sum assertions with particular numbers for x and y, such as

(observe (sum 4 5 ?))

The actor implementing the service listens for requests with

(observe (observe (sum ? ? ?)))

ZU064-05-FPR jfp 13 May 2020 10:44

Typed Dataspace Actors 9

in this case responding (sum 4 5 9). The arithmetic service answers requests by analyz-
ing the x and y values of sum requests and ignoring z:

(project [(observe (sum $x $y)) e] (sum x y (+ x y)))

The example illustrates how interpreting the assertion of interest as a request yields
the simplest possible protocol. Abstractly, this protocol for request/response situations
combines the request assertion with the interest in the result. It thus reduces both the
number of assertions an actor must state to make a request and the different types of
assertions comprising the conversation. To appreciate the protocol’s simplicity, consider
the next-best alternative, which would be to use two distinct structs. One struct would rep-
resent requests separately via a (sum-request x y) assertion. The other would describe
the results of requests as a (sum x y z) assertion. Assertions of interest in results must
include the inputs x and y, so that there is no confusion with answers to other requests. This
requirement is equivalent to (observe (sum x y ?)), which is the request from above
and suggests the simplification to a single struct.

2.4 The Problems of Programming Actors in Untyped Languages

Not surprisingly, using an untyped functional language as the implementation substrate of
dataspace actors leads to the serious problems mentioned in the introduction.

(1) Productive communication between actors requires an agreement on the kinds of
data to be exchanged; programming in such a manner is analogous to following a type dis-
cipline. Untyped languages like our Racket prototype provide little help with finding, and
no help adhering to, a type structure that governs the communication between components.
Consequently, the potential for mismatched messages undermines the principle of failure
isolation. A buggy actor may make utterances that violate these expectations, but it is the
actors that interpret the faulty messages that suffer the consequences. Worse, some of these
mistakes correspond to simple type errors. A bug in a user-agent actor may turn a numeric
user input into an assertion about its name, as a number rather than a string, causing other
actors to crash while merrily continuing its own existence.

(2) The recursive nature of (interest in) assertions complicates the matter further. In
the arithmetic dataspace from section 2.3, a logic programmer may scan the description
of sum assertions and surmises that the protocol lends itself to computing differences as
well as sums, as with (observe (sum 4 ? 9)). Such a request is incompatible with the
implementation of the arithmetic service described above; it violates the assumption that
the y slot is a number, even though it matches the service’s assertion of interest (observe
(observe (sum ? ? ?))). As discussed in section 2.1, project errors when a pattern
variable has an infinite number of matches, so delivering such an assertion to the service
actor causes it to crash—another failure to isolate misbehaving actors.

(3) The principle of scalability requires a certain amount of cooperation between actors
in terms of execution time. Indeed, Garnock-Jones et al. (2016) show several key properties
of the dataspace model under the assumption that the behavior function of every actor
is total (including exceptions). However, programming actors in an untyped functional
language such as Racket or ECMAScript allows the creation of both total and divergent
behavior functions, with no way to distinguish the two. Moreover, divergence is a form

ZU064-05-FPR jfp 13 May 2020 10:44

10 S. Caldwell and T. Garnock-Jones and M. Felleisen

of failure, but it bypasses the reasoning mechanism provided by the language for these
situations—automatic withdrawal of assertions. The termination guarantees of a simple
type system aid in isolating and responding to failures as expected in the actor model.

(4) Additionally, developers may wish to place specific restrictions on the behavior
of certain actors. For instance, in the case that some rooms are private, the developer
of the chat server may wish to ensure that user-agent actors do not make overly broad
queries. Permitting such queries would allow a curious user to discover the existence of,
and join, private channels without an invitation. Types are one mechanism for imposing
such constraints. If the type of user-agent actors indicates that no such subscriptions are
made, the protocol is safe from intrusions.

3 Types for the Dataspace Model

Designing a type system for dataspaces requires consideration of the semantics of both
communication and computation, with special attention to the intersection of the two
concerns. Our design meets this high-level criterion as follows:

• The language of types accounts for the flexible nature of dataspace communication
with “true” (set) unions (Pierce, 1991) for describing sets of assertions. Dataspaces
are about commingling actors: each actor partakes in, and each assertion potentially
pertains to, several conversations. Union types mirror the overlapping conversations,
making them suitable for describing the (sets of) assertions in a dataspace.
• Communication and computation coincide in the functions used to express actor

behavior. Dataspace event dispatch (communication) becomes function application
(computation). The return values of behavior functions give rise to routing events.
These functions warrant additional checking on inputs and outputs, accounting for
their dual purpose.
• Additionally, behavior functions must terminate on all inputs. But, writing actors

in a language with recursion permits diverging programs. To address this issue,
we employ the standard method of basing the type system on the simply-typed λ -
calculus plus an induction schema per recursive type (Jeuring, 1995), which is known
to make for a terminating language.
• Finally, the computational constructs for creating and accessing the sets of assertions

used for communication introduce new possibilities for computational errors. Hence,
the type system prohibits creating assertion sets with higher-order data or selecting
an infinite branch of an assertion set with project.

The rest of this section is an informal introduction to this somewhat unusual combination
of ideas.

3.1 Typed Dataspaces By Example

Unions. Union types are the basic building block of typed dataspace actors. In dataspaces,
groups of actors participate in conversations where each utterance takes the form of an

ZU064-05-FPR jfp 13 May 2020 10:44

Typed Dataspace Actors 11

assertion. Describing these conversations with types means grouping together related as-
sertions. Unions capture the multi-party, overlapping nature of dataspace conversations.4

For instance, in the chat room example from section 2, actors communicate presence
information through in-room assertions and interest in those assertions. Each in-room as-
sertion has type (InRoom String String). A value of type (InRoom String String)

is an assertion (in-room v1 v2) where both v1 and v2 are strings. By convention, type
constructors such as InRoom are the camel-cased name of the described structure.

An assertion of interest in other participants, such as (observe (in-room ? "FBI")),
has type (Observe (InRoom ? String)). The type uses the parameterization of the
InRoom constructor to allow wildcard interest in usernames but limit interest to named
rooms. As a type, ? stands for all possible assertions, including concrete strings, numbers,
or interests, as well as any infinite set of assertions arising from { . . .} (set creation)
expressions containing ?.

The union type PresenceAssertions describes the “Room Presence” conversation,
including both the assertion made by a user-agent to signal its presence in a particular
room as well as the assertion of interest used to monitor its peers:

(define-type PresenceAssertions

(U (InRoom String String)

(Observe (InRoom ? String))))

Together, they describe the possible utterances in the conversation between user-agent
actors concerning chat-room presence.

Grouping together the types of each assertion pertaining to a conversation in a union
provides useful documentation and aids in separate, modular programming of actors. While
a single actor may express only a subset of the assertions, the flexible nature of union
types allows the composition of overlapping conversations. For example, the room-list
actor monitors in-room assertions and publishes a list of results. The InRoom assertions,
the room-list actor’s interest in them,5 the published RoomList, and the interest used by
other actors to learn the list forms an “Available Rooms” conversation:

(define-type RoomAssertions

(U (InRoom String String)

(Observe (InRoom ? ?))
(RoomList (List String))

(Observe (RoomList ?))))

The “Room Presence” and “Available Rooms” conversations overlap, with each in-room

assertion playing a role in both. In one conversation an assertion signifies the existence of
a particular user, while in the other it signifies the existence of a particular room.

As figure 3 shows, a user-agent actor performs additional communication to notify the
connected user of specific events. This conversation comprises of user-notification

4 Such types do not account for temporal or substructural constraints on exchanges; see section 6.
5 The type of interest in presence employed by the room list actor, (Observe (InRoom ? ?)),

reflects the potential for wildcard interest in all possible rooms, unlike that of the user agent.

ZU064-05-FPR jfp 13 May 2020 10:44

12 S. Caldwell and T. Garnock-Jones and M. Felleisen

structures, described by the type

(define-type NotificationAssertions

(U (UserNotification String)

(Observe (UserNotification ?))))

The full implementation includes other conversations for network connectivity, sending
chat messages, and changing rooms, each with a similar type: NetworkAssertions, ChatAssertions,
RoomAssertions, and so on.

By describing the conversations in isolation, each actor can be implemented in terms of
only those conversations in which it participates. In the case of the user-agent described
here, we may elide NetworkAssertions, among others:

(define-type UserAgentAssertions

(U PresenceAssertions

RoomAssertions

NotificationAssertions))

(define-type ChatDataspace

(U PresenceAssertions

NotificationAssertions

NetworkAssertions

ChatAssertions

RoomAssertions))

Fig. 4. Chat Server Communication Type

Dataspaces. Taking the union of all the conversations, as shown in figure 4, yields a type
that describes the entire dataspace. Supplying that type to a typed dataspace constructor,

(dataspace ChatDataspace

(actor ...)

...)

demands that all assertions have type ChatDataspace. The annotation is referred to as the
communication type of the dataspace. The communication type is an agreement among the
actors, both limiting each individual’s actions as well as enabling typed reasoning about
the behavior of peers. In the chat dataspace, the type permits the user-agent actor’s pres-
ence assertion (in-room "Mo" "FBI"), of type (InRoom String String), and inter-
est (observe (in-room ? "FBI")), with type (Observe (InRoom ? String)), be-
cause of their inclusion in the ChatDataspace type via PresenceAssertions. By con-
trast, the ChatDataspace type prohibits actors that assert (in-room "Marvin" 42), be-
cause the second slot is not a string, or overly-broad queries such as (observe ?), because
? is not a subtype of any of the constructors that appear under observe in ChatDataspace.

While the communication type restricts the assertions an actor may make, it also enables
reasoning about the shape of assertions that may match an expressed interest. The key
assurance of the ChatDataspace type is that any assertion matching an expressed interest
in in-room assertions is an in-room struct where both slots contain strings. That is, in any
set of assertions a sent to an actor, the set corresponding to the names of connected users,

ZU064-05-FPR jfp 13 May 2020 10:44

Typed Dataspace Actors 13

{v1 | (in-room v1 v2) ∈ a}, is a finite set of strings, and similarly for the set of values
in the second slot, the names of inhabited rooms. Consequently, the behavior functions of
actors in the dataspace may use project to analyze the names of individual users and
rooms without triggering an error.

Actors and Simple Behavior Functions. Every individual actor operates within a data-
space, making and withdrawing assertions, processing assertions, and spawning further
actors, each of which also resides in the dataspace. In typed programs, the dataspace
contains only assertions belonging to a specific type—the communication type τc. Hence,
τc plays a central role in checking individual actor specifications.

The type for actors must then reflect the type τc of the dataspace in which it is going
to run. A developer can use this type to rationalize the initial assertions and, most impor-
tantly, the code for the behavior function. Specifically, the developer must ensure that the
behavior function (1) produces only actions—assertions as well as spawned actors—that
the dataspace’s type permits; (2) is prepared to deal with any event to which the dataspace
may apply it; and (3) spawns only actors that recursively obey these constraints, too.

A translation of these insights calls for equipping an actor term

(actor behavior state assertions)

with an interface type. This step resembles the addition of a parameter type to lambda terms
during the design of a simple type system for languages based on the lambda calculus.
Since an actor communicates within a dataspace of some communication type, the best
way to signal this assumption is with an annotation τc that requests this match:

(actor τc behavior state assertions).

In contrast to function application, actor application is implicit. An actor term is used
by submitting it to the dataspace as an action. In dispatching events, the dataspace ap-
plies the actor’s behavior function and interprets the resulting actions. These semantics—
dispatching events and interpreting actions—are not represented in the surface syntax of
the program, meaning it is not possible to check the use of an actor independently from its
use in a dataspace. We can express this insight by assigning the type

(Actor τc)

to an actor term. By implication, it becomes straightforward to check a dataspace term. All
initial actors must have the type (Actor τc) if τc is the type of the dataspace.

Validating that an actor has a given type proceeds according to the three steps above:

1. The assertions of an actor come from two sources: either as part of its initial asser-
tions or as an action produced by its behavior function. For the former, we check that
the type of the initial assertion set is included by the assumed communication type
τc. For the latter, recall the informal signature of behavior functions from section 2.1:

Event×State→ State× Instructions

For the moment, let us simplify things even further by considering the behavior
function as taking in assertions of some type τin and outputting assertions of another

ZU064-05-FPR jfp 13 May 2020 10:44

14 S. Caldwell and T. Garnock-Jones and M. Felleisen

type, τout:

τin→ τout

Conceptually, τin and τout are the essence of the Event and Instructions types, re-
spectively. Validating the assertions stated by the actor then entails checking that τc

includes each type of assertion from τout.

2. Dataspaces compute and route events according to expressed interests Hence, the
assertions constructed with Observe in τout define a bound on possible events. Type
checking uses this bound together with the rest of the assertions in the dataspace,
represented by τc, to predict the types of events produced by routing when the pro-
gram runs. To make this prediction, the type checker takes the intersection between
assertions of interest in τout with τc. The result is a type describing all potential events
the behavior function may be applied to, which must be a subtype of τin.
Concretely, in the case of the user-agent actor τout is

(U (Observe (InRoom ? String))

(InRoom String String)

(UserNotification String))

According to the type, the actor might assert (observe (in-room ? "FBI")). It
would then receive a notification containing all in-room assertions with the string
"FBI" in the dataspace. Inspecting the ChatDataspace type of figure 4, the type
of potentially overlapping assertions is (InRoom String String). Consequently,
the user-agent actor’s behavior function input type τin must accommodate such as-
sertions.

3. Finally, an actor may spawn other actors into its dataspace. If every one of these
actors has type (Actor τc), they all obey the communication discipline of the
surrounding dataspace.

Manipulating Assertion Sets. The type system prevents the creation of illegal assertion
sets by stratifying types into two levels. The first level, flat types, correspond to the plain
data suitable for sharing in the dataspace: Int, String, and so on, as well as type construc-
tors such as lists, structs, and unions when applied to other flat types. The second level is
everything else—values that cannot easily be compared for equality, such as functions,
objects, and actors. Typing a set-creation form {e ...} then checks that each element e
has a flat type, i.e., not a function, object, or actor.

The type (AssertionSet τ) describes a set of assertions of type τ arising from an
expression {e ...}. A patch (patch e e) is essentially a pair of assertion sets, thus the
type (Patch τ σ) records the type of assertions to add, τ , and the type of assertions to
withdraw, σ .

We use the abbreviation (Event τ) to stand for (Patch τ τ), signifying that data-
spaces notify actors of both the appearance and disappearance of assertions matching an
interest. An actor may request the retraction of an assertion it is not presently making,
which is a no-op. An actor may make use of this fact by issuing an overly-broad retraction,
alleviating some responsibility for tracking currently made assertions. For example, an
actor may submit the patch (patch {} {?}) to withdraw all of its current assertions. To

ZU064-05-FPR jfp 13 May 2020 10:44

Typed Dataspace Actors 15

account for this fact, we use the abbreviation

(Action τ σ)
d f
= (U (Patch τ ?) (Actor σ))

to describe actor actions. The type allows any set of assertions to be withdrawn, as well as
the potential to require spawned actors to operate at the communication type σ .

Typed assertion-set projection differs from the untyped version in several ways. The
first is a syntactic change to patterns. In order to facilitate type checking, pattern variables
come with a type annotation, as in $name:String.6 The type of this pattern variable is
then (Bind String), while the pattern has type Discard. Type-checking additionally
verifies that the expressions within patterns are well-typed.

Detecting erroneous uses of project involves considering paths to binding patterns
and ? in potentially matching types. Recall that project raises an error when a binding
pattern, such as $name:String, has an infinite number of matches in the given set, as in
the following expression:

(project [(in-room $name:String "FBI") {(in-room ? ?)}] name)

Conceptually, performing the operation requires iterating over the infinite set

{v | (in-room v "FBI") ∈ {(in-room ? ?)}}

The cause of the error is not simply because the given set is conceptually infinite. Often,
the structure of the pattern provides enough information to discriminate most elements of
the set. In the expression

(project [(in-room $name:String "FBI") {(in-room "Mo" ?)}] name)

the matched set,

{v | (in-room v "FBI") ∈ {(in-room "Mo" ?)}}= {"Mo"},

is finite, thus evaluation poses no issues. An error occurs exactly when a binding variable
in the pattern corresponds to a wildcard ? in the assertion set. The type system therefore
tracks both uses—the latter by assigning ? the type ?—and analyzes the type of the pattern
against the type of the contents of the set. The potential for the pattern to match assertions
is determined by computing the overlapping elements of the types. A type error arises only
if there is a common path through both types that may potentially match, leading to (Bind

τ) in the pattern and ? in the set.

Termination. In order for dataspace programs to make progress, individual actors must
terminate—either normally or via an exception—in response to every event. This assump-
tion is easily violated when programming with general-purpose constructs such as func-
tions. The type system disallows recursive functions, but still allows for using recursive
data structures such as lists via inductive schemas. Recursive data structures must be used
via an inductive eliminator in the shape of a folding loop.

6 Our prototype implementation can infer these annotations, but we include them in examples here
to clearly separate typed and untyped code.

ZU064-05-FPR jfp 13 May 2020 10:44

16 S. Caldwell and T. Garnock-Jones and M. Felleisen

Actor Subtyping. Subtyping for actor actions aids modular development of actors and
permits type-level constraints to be imposed on individual actors, rather than the entire
dataspace. For example, the user-agent actor can be developed using a communication
type that describes only those conversations in which it participates:

(actor UserAgentAssertions ...)

yielding a term of type (Actor UserAgentAssertions). Ultimately, however, user-
agent actors operate in a dataspace with communication type ChatDataspace. Hence, we
must check that the difference between the two communication types does not invalidate
the reasoning by which type checking the user-agent actor first succeeded.

Checking the actor creation action computes an intersection between the assertions of
interest made by the user-agent actor with UserAgentAssertions to determine the events
it might receive. In a dataspace with a different type, such as ChatDataspace, the actor’s
interests might match different types of assertions, which may potentially be incompatible
with its behavior function type. The question, then, is whether the actor’s interests lead to
“surprising” events when operating in a different type of dataspace.

Actor subtyping answers this question. The first item to check is that all of the user-
agent’s assertions are allowed in the greater chat dataspace, that is, UserAgentAssertions
must be a subtype of ChatDataspace. Next, we must make sure that running in a ChatDataspace
context does not yield surprising events, i.e., events not considered the first time we checked
the user-agent. The UserAgentAssertions type permits one type of interest,

τobs = (Observe (InRoom ? ?))

Intersecting τobs with ChatDataspace yields the possible type of events the actor receives
when run in the dataspace, (InRoom String String).

Since (InRoom String String) is in UserAgentAssertions, it is also in the inter-
section of τobs and UserAgentAssertions. Consequently, (InRoom String String)

events have already been considered, and deemed safe, against the input type of the user-
agent actor’s behavior function during the checking of the corresponding actor form.

3.2 Typing the Chat Room

Figure 5 displays the typed version of the code from figure 3, highlighting the changes. The
primary difference between the two figures is the addition of the UserAgentAssertions
and ChatDataspace type abbreviations (figure 4). Otherwise, there are minor changes
to insert type annotations on function parameters, binding patterns, and actor-spawning
expressions. The example also makes use of the abbreviation ⊥ for the empty union.

The behavior function comes with a narrow type of input event,

(Event (InRoom String String))

containing only one of the many forms of assertions with which actors communicate in
the dataspace. Because the actor states only one type of interest, the type system is able to
verify that incoming events do indeed have such a refined type. The example illustrates how
a highly expressive type system can easily validate complex confluences of communication
and computation.

ZU064-05-FPR jfp 13 May 2020 10:44

Typed Dataspace Actors 17

Typed

(define-type UserAgentAssertions

... defined on page 12 ...)

(define-type ChatDataspace

... defined in figure 4 ...)

(define (main)

(dataspace ChatDataspace

(list
(create-user-agent "Mo" "FBI")
(create-room-list ...)
...)))

(define (create-user-agent [name : String]

[initial-room : String]

-> (Actor UserAgentAssertions))

(actor UserAgentAssertions

;; behavior: notify the user as peers enter and
;; leave the current room.

(lambda ([event : (Event (InRoom String String))]

[current-room : String])

(define arrivals
(announce (patch-added event) current-room " arrived."))

(define departures
(announce (patch-removed event) current-room " departed."))

(transition current-room
(append arrivals departures)))

initial-room
{(in-room name initial-room)
(observe (in-room ? initial-room))}))

;; Create user-notification patches based on
;; presence assertions in an event.

(define (announce [assertions : (AssertionSet (InRoom String String))]

[current-room : String]

[message : String]

-> (List (Patch (UserNotification String) ⊥)))

(project [(in-room $who:String current-room) assertions]

(patch {(user-notification (string-append who message))} {})))

Fig. 5. The typed user agent actor

The typed chat dataspace above rules out simple mistakes such as using a number instead
of a string for a username. These mistakes can result in non-local actor failure: faults in
actors that consume, rather than produce, bad presence information. The ChatDataspace
communication type prevents such an actor from being introduced into the typed dataspace
by specifying that room names are only ever finite sets of strings.

ZU064-05-FPR jfp 13 May 2020 10:44

18 S. Caldwell and T. Garnock-Jones and M. Felleisen

Constraining the User-Agent. The typed chat dataspace permits queries over both the
presence of users in a specific room, (Observe (InRoom ? String)), and over all
rooms, (Observe (InRoom ? ?)). The former are used by user-agent actors to monitor
the presence of peers in a room while the latter are used to aggregate information about
which rooms exist. Since UserAgentAssertions includes both PresenceAssertions

and RoomAssertions, the type permits user-agent actors to express both interest in spe-
cific room names and wildcard interest in every room. As discussed in section 2.4, the
developer may wish to enforce that user-agents do not make overly broad queries. For
example, private channel names may leak to an actor that asserts (observe (in-room ?

?)). To address this, the developer may ascribe a refined communication type to user-agent
actors:

(define-type RestrictedUserAgent

(U (InRoom String String)

(Observe (InRoom ? String))

NotificationAssertions))

This restrictive type enforces that queries are only over specific room names. Actor sub-
typing permits using the refined user-agent actor in the chat server dataspace.

3.3 Revisiting the Arithmetic Service

Recall the arithmetic service dataspace (section 2.3) and the error that arises from ? as-
sertions. Types prevent the scenario where sum assertions are abused to request difference
calculations. The program may use the communication type

(define-type ArithmeticAssertions

(U (Sum Int Int Int)

(Observe (Sum Int Int ?))
(Observe (Observe (Sum ? ? ?))))

and this type rules out difference-calculation requests.
Such a difference request assertion, say (observe (sum 4 ? 9)), would have type

(Observe (Sum Int ? Int)), which is not subsumed by ArithmeticAssertions. In
particular, because ? stands for all types of assertions, including strings and structures, it is
incompatible with the occurrence of Int in the corresponding position in ArithmeticAssertions.
An actor with such an output fails to type check in the ArithmeticAssertions dataspace,
thus preventing the dynamic error explained in section 2.4.

Alternatively, we could have chosen a communication type that is more permissive with
regard to interest in sum assertions:

(define-type PermissiveInterests

(U (Sum Int Int Int)

(Observe (Sum ? ? ?))
(Observe (Observe (Sum ? ? ?))))

A dataspace of this type allows difference requests. However, now a type error arises for the
actor implementing the arithmetic service. Recall that the service iterates over incoming
assertion sets e,

(project [(observe (sum $x:Int $y:Int)) e] (sum x y (+ x y)))

ZU064-05-FPR jfp 13 May 2020 10:44

Typed Dataspace Actors 19

This projection occurs inside the body of a behavior function, which assumes some type
for the incoming assertions contained by e. If that e has type PermissiveInterests, the
type system signals an error, since the path to $x:Int in the pattern leads to ? in the patch
set. By contrast, assuming the contents of the set e have type ArithmeticAssertions

allows the projection to type check.
When we try to create an actor action with the behavior function for a dataspace with

communication type PermissiveInterests, the type system detects a mismatch be-
tween the assumption and reality. Concretely, the actor makes an assertion of interest
(observe (observe (sum ? ? ?))) to learn about sum requests, with type

(Observe (Observe (Sum ? ? ?)))

Potentially matching assertions are the intersection with PermissiveInterests,

(Observe (Sum ? ? ?))

which is not a subtype of ArithmeticAssertions. Finally, checking the actor action suc-
ceeds if the supplied communication type annotation is ArithmeticAssertions. Actor
subtyping prevents instantiating such an actor in the PermissiveInterests dataspace
through a similar failed type-checking attempt.

The arithmetic service actor typifies the interplay between projection, function, and actor
typing. When writing a behavior function, the developer analyzes incoming assertion sets
using project. In order for the function itself to type check, the set must have a type
compatible with the supplied patterns. These constraints flow outward, to the function’s
parameter for incoming events, and they then become part of the domain of the function’s
type. When the function reaches an actor action, the type system finds the assumptions
in the domain of the function type and compares them with the reality of the surrounding
dataspace. Only when all of these elements agree are programs well-typed.

4 The Semantics of Actors

4.1 Specifying an Actor

Figure 6 introduces λds, a model language for articulating untyped dataspace actors. It is
representative of our ECMAScript and Racket prototypes, i.e., functional languages that
extend the λ -calculus syntax with means to interface with dataspaces. In our examples we
also use let and if with their usual meaning.

A complete program in λds is a description of a dataspace, dataspace M. The expres-
sion M computes a list of actors to launch at the start of the program. Over the course of
execution, additional actors may be dynamically spawned through actor actions as well
as removed due to failure or termination. Section 5 describes how this initial description
yields a running actor system.

Extensions to the base functional model compute values that, when sent to the surround-
ing dataspace, trigger certain actions: an assertion of interest (observe M); an assertion of
fact (m(

−→
M)); the spawning of a new actor (actor Mb Ms Ma)). The three parts of actor

correspond to the behavior function (Mb), private state (Ms), and initial actions (Ma) of an
actor. Additionally, the extensions also include expression forms to create sets of assertions
({−→SK }) and compose patches (M+/M−).

ZU064-05-FPR jfp 13 May 2020 10:44

20 S. Caldwell and T. Garnock-Jones and M. Felleisen

Behavior functions in λds return a pair of a new state value and a list of actions, as
opposed to the quit and transition records of our prototypes described in section 2.1.
The capabilities of the two interfaces are the same; rather than issue an explicit quit, actors
in λds signal termination by raising an error, triggering their removal from the dataspace.

A set constructor SK describes assertions, ranging from singletons to infinite sets (?);
{−→SK} translates to an assertion set π (from figure 7) for placement in the dataspace. When
an SK expression yields a value not suitable for dataspace assertions, such as a function, the
reduction ends in an error. The different variants of assertions employed in a dataspace
program correspond to a set of message constructors m, which otherwise behave like tuples.

The project form is the key mechanism for de-structuring incoming assertion sets in a
behavior function. Specifically,

project π with PAT in M

instantiates M with the bindings of PAT for each matching assertion in π and assembles
the results into a list. A pattern’s bindings may match an infinite number of values, as in

project {?} with $x in x

Our semantics interprets such expressions as errors.

4.1.1 The Reduction Semantics of λds

The reduction semantics of λds is mostly conventional (Felleisen et al., 2009); see figure 7.
The addition of assertions c and assertion sets π requires only a small extension over the
standard call-by-value semantics. Assertion sets are created from set constructors with the
metafunction make-set. The project metafunction implements projection, which eliminates
assertion sets. Appendix A provides the full definition of each metafunction.

The semantics distinguishes among three sources of errors in order to characterize the
soundness of our model precisely:

1. errorprim arises from application of partial primitive operations;
2. errorh-o arises from assertion sets containing functions or actors;
3. errorinf arises when project selects an infinite subset of assertions.

I ∈ Init = dataspace M

M ∈ Expr = λx.M | M M | x | p
−→
M | b

| errorη

| (
−→
M) | cons M M

| observe M | m(
−→
M)

| {−→SK} | M+/M−
| actor Mb Ms Ma
| project M with PAT in M

m ∈Msg = . . .message constructors
p ∈ Prim = . . .primitives

b ∈ BasicVal = . . .base values

PAT ∈ Pat = $x |
| M
| (

−−→
PAT)

| observe PAT | m(
−−→
PAT)

SK ∈ SetCons = ?
| M
| (

−→
SK)

| observe SK | m(
−→
SK)

η ∈ ErrorTag = prim | h-o | inf

Fig. 6. The Syntax of λds

ZU064-05-FPR jfp 13 May 2020 10:44

Typed Dataspace Actors 21

Evaluation Syntax

M = . . . | π

v ∈ Val = λx.M | b
| (−→v)
| cons v v
| observe v | m(−→v)
| π

| v+/v−
| actor vb vs va
| ? | $x |

c ∈ Assertion = b | (−→c) | cons c c | observe c | m(−→c)
π ∈ ASet = P(c)

E ∈ Ctx = � | E M | v E | p−→v E
−→
M | (−→v E

−→
M)

| cons E M | cons v E
| observe E | m(−→v E

−→
M)

| {−→v E
−→
SK} | E/M | v/E

| actor E M M | actor v E M
| actor v v E
| project E with PAT in M
| project v with E in M

Evaluation

eval(M) =

{
v if M −→∗ v
errorη if M −→∗ errorη

Notions of Reduction

E[(λx.M) v]−→ E[M[x← v]] (βv)

E[p−→v]−→ E[v′] where δ (p,−→v) = v′ (δ)

E[p−→v]−→ errorprim where δ (p,−→v) is undefined (δ -error)

E[{−→v }]−→ E[π] where make-set(−→v) = π (make-set)

E[{−→v }]−→ errorh-o where make-set(−→v) is undefined
(make-set-error)

E[project π with v in M]−→ E[M′] where project(π, v, M) = M′ (project)
E[project π with v in M]−→ errorinf where project(π, v, M) is undefined

(project-error)

Metafunctions

make-set
−→
Val−→partial ASet

make-set(−→v) translates a vector of values into a dataspace representation
undefined if given higher-order values

project ASet×Val×Expr−→partial Expr
project(π, vp, M) creates a list by replacing pattern variables from vp, an evaluated

pattern, in M with values from matching assertions in π

undefined if there is an infinite number of different matches

δ Prim×−→Val−→partial Val
applies a primitive; undefined in cases due to partial primitives

Fig. 7. The Essence of the Formal Semantics of λds

4.2 Types for Dataspaces and Actors

Figure 8 extends the syntax of λds with simple types, giving rise to λ∪ds. The primary
difference is the presence of type annotations in functions, actors, dataspaces, and patterns;
additionally, expressions now include fold Mc Mn Ml , a representative induction scheme

ZU064-05-FPR jfp 13 May 2020 10:44

22 S. Caldwell and T. Garnock-Jones and M. Felleisen

I = dataspace τc M

M = . . .
| λx : τ.M
| fold M M M
| actor τc Mb Ms Ma

PAT = . . .
| $x : τ

v = . . .
| λx : τ.M
| actor τc vb vs va
| dataspace τc v
| $x : τ

τ, σ ∈ Type = τ → τ | B
| Observe τ | m(−→τ)
| (−→τ) | List τ

| AssertionSet τ | Patch τ τ

|
⋃−→

τ

| Actor τ

| ?
| $: τ | Discard

B ∈ BaseTy = base types: String,Int,etc.

Γ ∈ Env = −−→x : τ

⊥ d f
=

⋃
·

Action τ σ
d f
= (Patch τ ?)∪ (Actor σ)

Fig. 8. Typed Syntax of λds

for iterating over lists. Reduction of fold terms is standard; lists unfold to applications of
Mc with base case Mn.

The language of types reflects the underlying expression language and adds union types
for dealing with dataspace communication. A union of types is written

⋃−→
τ . When conve-

nient, we use the infix notation τ ∪ τ . We do not provide any elimination forms for union
types. Rather, we use unions primarily for describing the contents of assertion sets and rely
on the pattern supplied to project to discriminate the branches of a union. The definition
of the project metafunction is the same as the one in the untyped model, relying on the
structure of the pattern to find matching assertions. Therefore, the type of the pattern must
predict how matching will proceed during evaluation. For example, let M describe a set of
assertions τ , where

τ = m1(String)∪m2(Int)∪m3()

Using a pattern that describes only one of the message constructors, m2, as in

project M with m2($x : Int) in x

focuses type checking on only those members of the union that might match the pattern,
allowing the projection to ignore m1 and m3. In a full implementation, we also expect
a discipline such as occurrence typing (Tobin-Hochstadt & Felleisen, 2008) to facilitate
programming with unions.

The type Actor τc is that of actors in a dataspace with communication type τc.
The data constructor observe is directly reflected as the type constructor Observe.

Similarly, m(−→τ) is the type of a message constructed by m with fields−→τ . The type ? is the
type of assertions created with ?. Thus, the expression {observe in-room(?,"FBI")}
has type

AssertionSet (Observe in-room(?,String))

The type Patch τ+ τ− describes patches M+/M− where M+ has type AssertionSet τ+

and M− type AssertionSet τ−. Finally, $: τ is the type of patterns $x : τ , Discard is
the type of , and Action τ σ abbreviates (Patch τ ?)∪ (Actor σ).

ZU064-05-FPR jfp 13 May 2020 10:44

Typed Dataspace Actors 23

4.3 Static Semantics

The purpose of the typing rules for λ∪ds in figure 9 is to establish three key invariants using
a standard judgment. First, actors place only valid data in their dataspace, i.e., first-order
sets of assertions at the specified communication type. Second, actors extract only finite
subsets of assertions via project. Third, well-typed actors are terminating; that is, they
either signal an error or terminate with a list of actions and a new private state value. This
last invariant discharges an assumption of the universal soundness theorem of Garnock-
Jones et al (2016).

` I

flat(τc) ` Mboot : List (Actor τc)

` dataspace τc Mboot
T-DATASPACE

Γ ` M : τ

Γ ` x : τ τ <: σ

Γ ` x : τ
T-SUB

Γ ` Mbehavior : (Patch τin τin,τstate) → (List (Action τout τc),τstate)
Γ ` Mstate : τstate Γ ` Massertions : AssertionSet τout
τout <: τc predict-routing(τout,τc) <: τin flat(τc)

Γ ` actor τc Mbehavior Mstate Massertions : Actor τc
T-ACTOR

Γ ` Ms : AssertionSet τs
Γ ` PAT : τp safe(τs,τp) bindings(PAT) = Γ

′
Γ,Γ′ ` Mb : τb

Γ ` project Ms with PAT in Mb : List τb
T-PROJECT

−−−−−−−−→
Γ ` SK : τ

Γ ` {−→SK} : AssertionSet
⋃−→

τ
T-SET π |= τ

Γ ` π : AssertionSet τ
T-π

Γ ` errorη : τ
T-ERROR

Fig. 9. Selected Elements of an Actor Type System

The typing rule for dataspace programs, T-DATASPACE, ensures that the communication
type τc describes assertions with the premise flat(τc). The flat judgment identifies the
types of basic, first-order data such as numbers, strings, tuples of numbers, and so on
suitable for dataspace assertions. Its complete definition is in appendix A. The rule also
checks that Mboot, the boot actors, all safely operate with communication type τc.

According to T-ACTOR, an actor of shape actor τc Mb Ms Ma may participate in a
dataspace of type τc when the type of its behavior function, Mb, fits the template

(Patch τin τin,τstate) → (List (Action τout τc),τstate)

and satisfies certain conditions concerning τin, τout, and τc. Specifically, all assertions
produced by the behavior function, τout, must be valid utterances in τc. Next, τin, the type of
assertions the actor is prepared to handle, must account for the actor’s interests. Intuitively,
an actor must be prepared to receive all of the assertions it asks for. The type τin describes

ZU064-05-FPR jfp 13 May 2020 10:44

24 S. Caldwell and T. Garnock-Jones and M. Felleisen

predict-routing : Type×Type−→ Type
predict-routing(τo,τc) = strip-obs(τo) ∩̃ τc

strip-obs : Type−→ Type
strip-obs(Observe τ) = τ

strip-obs(?) = ?

strip-obs(
⋃−→

τ) =
⋃−−−−−−−→

strip-obs(τ)
strip-obs(τ) = ⊥ otherwise

∩̃ : Type × Type−→ Type
τ ∩̃ τ = τ⋃−→

τ ∩̃ σ =
⋃−−−→

τ ∩̃ σ

τ ∩̃
⋃−→

σ =
⋃−−−→

τ ∩̃ σ

? ∩̃ τ = τ

τ ∩̃ ? = τ

List τ ∩̃ List σ = List (τ ∩̃ σ)
() ∩̃ () = ()

(τ1,
−→
τ2) ∩̃ (σ1,

−→
σ2) =

{
⊥ if τ11 <: ⊥ or τ22 <: ⊥
(τ11,

−→
σ22) if τ22 = (−→σ22)

where τ11 = τ1 ∩̃ σ1,τ22 = (−→τ2) ∩̃ (−→σ2)

m(−→τn) ∩̃ m(−→σn) =

{
m(−→σ) if τ = (−→σ)

⊥ otherwise
where τ = (−→τn) ∩̃ (−→σn)

Observe τ ∩̃ Observe σ =

{
⊥ if τ ′ <: ⊥
Observe τ ′ otherwise

where τ ′ = τ ∩̃ σ

τ ∩̃ σ = ⊥ otherwise

Fig. 10. Key Support Metafunctions

the actor’s assumptions about the sets of assertions it receives, including which subsets may
be infinite. The actual assertions it receives arise from dataspace routing, which matches
stated interests against all current assertions. The predict-routing metafunction, defined in
figure 10, mirrors run-time routing in order to predict the types of assertions received by an
actor. It computes the overlap between the types of interests expressed by an actor and the
types of possible assertions in the dataspace. The assertions the actor may express interest
in are exactly those prefixed by Observe in τout; the metafunction strip-obs finds all such
types, while the ∩̃ metafunction determines the type representation of the overlap between
such interests and the potential assertions in the dataspace, τc (figure 10). Since ? stands
for all possible assertions, including observe-prefixed ones, strip-obs treats ? as if it were
the unfolding Observe ?. Finally, the second parameter of Action τout τc in T-ACTOR

requires the type of any spawned actor to conform to communication type τc.
Rule T-PROJECT eliminates two potential problems from matching a pattern with type

τp against a set of type AssertionSet τs. First, binding variables in the pattern may have
an infinite number of matches. Second, matching assertions may be incompatible with the

ZU064-05-FPR jfp 13 May 2020 10:44

Typed Dataspace Actors 25

τ <: σ

flat(τ)

τ <: ?
S-?

τ <: σ predict-routing(τ,σ) <: τ

Actor τ <: Actor σ
S-ACTOR

safe(τ,σ)

finite(τ) τ <: σ

safe(τ,$: σ)
PS-CAPTURE

safe(τ,Discard)
PS-DISCARD

π |= τ

π |= ?
M-?

π ⊂ Z ∃n.|π|= n
π |= Int

M-INT
π
′ |= τ π ⊆ {observe v | v ∈ π

′}
π |= Observe τ

M-OBSERVE

Fig. 11. Key Support Judgments

type associated with binding variables, $: τ . The safe(τs,τp) judgment enforces this
constraint by finding the portion of the analyzed assertion set that may match and bind
variables in the pattern. Both aspects are checked by rule PS-CAPTURE (figure 11), which
corresponds to an identified match. The finite(τ) premise ensures matched assertion
types do not contain ?, while τ <: σ checks that they meet the pattern’s expectations.
Appendix A provides the full definition of each judgment.

The T-π rule describes assertion sets π , which are not a part of the surface syntax of λ∪ds.
They arise through the evaluation of {−→SK } forms and via dataspace event dispatch. Since
we wish to employ a standard progress-and-preservation proof technique, we must assign
them types. The π |= τ judgment (figure 11; appendix A) checks that the set π corresponds
to the structure of type τ in a way that allows it to be used by λ∪ds actors.

For example, consider the type for interest in presence of a chat room:

τq = Observe (in-room(?,String))

A set π has type AssertionSet τq under these conditions:

• Every element of π must be a message constructed with in-room holding two fields,
prefixed by the observe constructor.

• The set of values appearing in the second slot of each message must be a finite set of
strings. That is, {v2 | observe in-room(v1,v2) ∈ π } is a finite set of Strings.

• The set of values appearing in the first slot of each message may be any set of
assertions, including infinite sets.

The subtyping judgment Actor τ <: Actor σ ensures that every utterance in τ is
a valid utterance in σ . Furthermore, the judgment must also check for the possibility of
interference. That is, transplanting the τ-typed actor’s subscriptions to the new σ -typed
dataspace must not result in assertions that the actor is unprepared to handle. As in T-
ACTOR, this condition is checked by computing predict-routing(τ,σ), a type that reflects
routing in dataspaces.

ZU064-05-FPR jfp 13 May 2020 10:44

26 S. Caldwell and T. Garnock-Jones and M. Felleisen

4.4 Properties

The typed language of dataspace actors satisfies a number of critical properties, most
importantly, type soundness and termination.

Lemma 1 (Progress). If ` M : τ and M 6= errorη , then either M ∈ Val or there exists
an M′ such that M −→M′.

Proof By case analysis on the shape of M. �

Lemma 2 (Preservation). If ` M : τ and M −→M′, then ` M′ : τ .

Proof By case analysis on possible reductions M −→ M′. The proof relies on several
auxiliary lemmas about operations on assertion sets. In particular, lemmas 3 and 4 show
that creating assertion sets never causes an error and uses of project always select finite
subsets of assertions. �

Lemma 3 (Soundness of Creating Assertion Sets). If for some −→v and τ , ` {−→v } :
AssertionSet τ , then there exists π such that make-set(−→v) = π and π |= τ .

Proof By induction on the typing derivation. �

Lemma 4 (Soundness of project). If Γ ` project π with vp in M : τ , there exists
an M′ such that project(π, vp, M) = M′, Γ ` M′ : τ .

Proof By induction on the typing derivation. �

Theorem 5 (Soundness & Termination). If ` M : τ and errorη /∈M, then either

1. M −→∗ v and ` v : τ; or
2. M −→∗ errorprim.

Interpretation The second case of theorem 5 implies that errors may only arise due to
the application of partial primitives, never through malformed communication (errorh-o)
or touching infinite sets of assertions (errorinf). �

Proof Starting from a well-typed term, we employ the usual progress (lemma 1) and
preservation (lemma 2) lemmas (Wright & Felleisen, 1994) to show soundness.

To show that reduction sequences terminate with a value, we use the standard “candi-
date” technique (Girard, 1971). One salient detail of the proof is that, by the nature of
assertions, the pattern variables in project are always instantiated with first-order values.
�

The reduction semantics of λ∪ds programs suffices to describe how an individual ac-
tor’s behavior function computes a response to an event. It does not explain, however,
any properties of dataspace actors specified with λ∪ds, that is, the meaning of a complete
program dataspace τc M. In order to understand how systems of actors interact, we must
examine the specifics of dataspace coordination, allowing us to pose and answer questions
concerning actor behavior with the proper context.

ZU064-05-FPR jfp 13 May 2020 10:44

Typed Dataspace Actors 27

5 The Complete Dataspace Model

Dataspace coordination permits groups of actors to share knowledge via a common repos-
itory, events, and actions. Events arise when new information appears and is relevant to a
stated interest of an actor. Section 5.1 gives a formal model of dataspace coordination.
The model abstracts over the details of how an individual actor responds to an event,
calling only for a total function that transforms a current state value to a new state and
some actions. Implementing actor behavior with a specific language, such as λ∪ds, requires
showing that it lives up to the expected interface. It is imperative that the internal actor
language and dataspace coordination model share a common ontology, enabling them to
exchange (representations of) events and actions. Section 5.2 illustrates how to link the
two parts of the model. Section 5.3 shows that both models meet each others’ expectations,
thus enjoying the desired soundness property.

5.1 Recap of the Dataspace Syntax and Semantics

Figure 12 provides a syntax for the dataspace part of our model. The internal behavior of
each actor is a mathematical function. This interface is an abstraction point; it separates the
concerns of an individual actor implementation from the details of dataspace concurrency
and coordination. Consequently, we can just as easily use the dataspace configuration
syntax and semantics with λ∪ds, a model of a Racket-like functional language, as with an
object-oriented model based on our ECMAScript prototype. To minimize bookkeeping,
the grammar reuses the syntax of events, values, and actions from section 4.

Programs P ∈ Prog = dataspace
#”
S

Actor Specifications S ∈ Specs = actor f vπ

Behavior Functions f ∈ BehFun = Event×Val−→total
”
Action×Val+Error

Events e ∈ Event = ∆

Actions a ∈ Action = ∆ | S
Patches ∆ ∈ Patch = π+/π− where π+∩π− = /0

Errors † ∈ Error = errords
Assertion sets π ∈ ASet (defined in fig. 7)

Assertions c ∈ Assertion (defined in fig. 7)
Values v ∈ Val (defined in fig. 7)

Fig. 12. Syntax of Dataspaces

Writing down the reduction semantics for dataspace programs—modulo the semantics
for internal actor behavior—requires three elements: (1) a generalized syntax to specify
intermediate configurations; (2) several basic notions of reduction; and (3) metafunctions
to keep the formulation of the reductions concise.

Evaluation Syntax. Figure 13 defines the evaluation syntax of dataspace programs. A
running dataspace configuration C contains a pending action queue, the set of all current
assertions, and the contained actors. Each actor is represented by an internal name ` and a
state Σ. The state of an actor consists of a queue of events to handle, a behavior B comprised
of a function and current private state value (f ,v), and a queue of actions that need to

ZU064-05-FPR jfp 13 May 2020 10:44

28 S. Caldwell and T. Garnock-Jones and M. Felleisen

be processed by the surrounding dataspace. Quiescent terms are those without pending
actions; inert terms have neither pending actions nor events to handle.

Configurations C ∈ Config = [
”

(k,a) ; R ;
#”
A]

Behaviors B ∈ ABehav = (f ,v)
Actors A ∈ Actor = ` 7→ Σ

Actor States Σ ∈ AState = #”e .B. #”a
Assertion Tables R ∈ DS = P(Lift(Loc)×ASet)

Local Labels j,k, ` ∈ Loc = N

boot : Specs+Prog→ AState+Config
boot(actor f vπ) = ·. (f ,v).π/ /0

boot(dataspace
#”
S) = [

”

(0,S) ; /0 ; ·]

Evaluation Contexts EΣ = [· ; R ;
#”
AI(` 7→�)

”
AQ]

Quiescent Terms
AQ ∈ ActorQ = ` 7→ ΣQ
ΣQ ∈ AStateQ= #”e .B. ·

Inert Terms
CI ∈ ConfigI = [· ; R ;

#”
AI]

| (f ,v)
AI ∈ ActorI = ` 7→ ΣI
ΣI ∈ AStateI = ·.B. ·

Fig. 13. Evaluation Syntax and Inert and Quiescent Terms of Dataspaces

Reduction Relation. Figure 14 presents the reduction semantics of dataspaces. The −→Σ

relation operates on individual actor states Σ, while the −→ds relation describes the reduc-
tion of dataspace configurations, with the aim of reaching quiescent or even inert states:

• notify hands an event to the behavior function of an actor and records the new state
plus ensuing actions;

#”e e0 . (f ,v). #”a −→Σ
#”e . (f ,v′). #”a ′ #”a when f (e0,v) = (#”a ′,v′) (notify)

#”e e0 . (f ,v). #”a −→Σ ·. (λeu.(·,v),v). /0 #”a when f (e0,v) ∈ Error (exception)

[
”

(k′,a)(k,S) ; R ;
”
AQ]−→ds [

”

(k′,a) ; R ;
”
AQ(` 7→ boot(S))] (spawn)

where ` distinct from k, every k′, and the labels of every AQ

[
”

(k,a) ; R ;
”
AQ Aout(a′′)

#”
A]−→ds [(`,a

′′)
”

(k,a) ; R ;
”
AQ Aout(·)

#”
A] (gather)

where Aout(a) = ` 7→ #”e ′ .B. #”a ′a

[
”

(k′,a)(k,π+/π
−) ; R ;

”
AQ]−→ds [

”

(k′,a) ; R⊕ (k,∆′) ;
”

bc∆(k,∆′,R,AQ)] (patch)

where ∆
′ = (π+−{c | (k,c) ∈ R})/(π−∩{c | (k,c) ∈ R})

EΣ[ΣQ]−→ds round-robin(EΣ,Σ′) if ΣQ −→Σ Σ
′ (schedule)

Fig. 14. Reduction Semantics of Dataspaces

ZU064-05-FPR jfp 13 May 2020 10:44

Typed Dataspace Actors 29

bc∆ : Loc×Event×DS×ActorQ −→ Actor

bc∆(k, πadd/πdel, Rold, ` 7→ #”e .B. ·) =

` 7→ ∆fb

#”e .B. · if `= k and ∆fb 6= /0/ /0
` 7→ ∆other

#”e .B. · if ` 6= k and ∆other 6= /0/ /0
` 7→ #”e .B. · otherwise

where

∆fb = {c |c ∈ π•add, (`,observe c) ∈ Rnew}∪{c |c ∈ (π◦∪π•add−π•del),observe c ∈ πadd}/
{c |c ∈ π•del, (`,observe c) ∈ Rold}∪{c |c ∈ π◦,observe c ∈ πdel}

∆other = {c | c ∈ π•add, (`,observe c) ∈ Rold}/{c | c ∈ π•del, (`,observe c) ∈ Rold}
π• = {c | (j,c) ∈ Rold, j 6= k}

Rnew = Rold⊕ (`,πadd/πdel)
π•add = πadd−π•

π◦ = {c | (j,c) ∈ Rold}
π•del = πdel−π•

Fig. 15. Dataspace Routing

• exception terminates an actor that raises an exception;
• spawn creates a new actor;
• gather enqueues an action for the dataspace;
• patch realizes a state-change notification; and
• schedule selects which actor to run.

Metafunctions. Figure 15 defines bc∆, the metafunction that implements routing and the
semantics of observe. It computes the relevant changes to an actor with label ` based on a
patch made by actor with label k. In the case that `= k, it must also consider the possibility
that the actor’s interests change as a result of the patch. In that case, the constructed patch
∆fb reflects the most up-to-date interests of the actor.

Appendix A provides the definitions of two additional metafunctions:

• ⊕ updates an actor’s assertions in a dataspace;
• round-robin rotates the actors in the configuration.

5.2 Connecting the Dots

There is still one divide left to bridge: the models of dataspaces from section 5.1 and the
language for programming individual actors from section 4 employ different notions of ac-
tor behavior functions. On one side, dataspaces appeal to abstract mathematical functions,
while on the other side λ∪ds provides concrete λ -terms, symbolic descriptions of functions
given meaning through a reduction relation. This difference must be reconciled in order
to combine the two semantics into a complete understanding of dataspace programs. The
two boxes in figure 14 point out the two positions where a base language of computation
interfaces with the dataspace part of the overall language.

The eval function for λ∪ds (figure 7) provides a first step for reconciling the difference
between the two parts of the model. It is a mechanism for accessing λ∪ds terms as if they
were mathematical functions. Its signature, though,

eval : Expr−→ Val

ZU064-05-FPR jfp 13 May 2020 10:44

30 S. Caldwell and T. Garnock-Jones and M. Felleisen

behaviorλ∪ds
: Event×Val−→ # ”

Action×Val+Error

behaviorλ∪ds
(e,(v f ,vs)) =

{
(
−−→
dvae,(v f ,v′s)) if v = (vlist,v′s)
errords if v = errorη

where Mdispatch = v f (bec,vs)
v = eval(Mdispatch)−→va = seq(vlist)

b c : Event−→ Val
bπ+/π−c = π+/π−

d e : Val−→ Action
dπ+/π−e = π+/(π−− π+)

dactor τ v f vs πe = actor behaviorλ∪ds
(v f ,vs) π

seq : Val−→−→Val
seq(nil) = ·

seq(cons vh vt) = vh,seq(vt)

Fig. 16. Mind the Gap

is incompatible with BehFun (figure 12). However, we can use it to create a behavior
function. Figure 16 defines behaviorλ∪ds

, which is suitable for λ∪ds actors. The idea is to
store each actor’s private state as a pair of λ∪ds values: one for the λ -term implementing the
behavior and one for the actual private state. Invoking eval on a function application term
comprised of the behavior function, the incoming event (as a λ∪ds term7), and the current
state value yields the actor’s response to the event. To reconcile the response, a λ∪ds value,
and a dataspace action, figure 16 also defines d e (pronounced “lift”), a translation that
relates λ∪ds values to dataspace actions. Because the syntax of events and actions in λ∪ds is
largely the same as that of dataspaces, the translation is mostly straightforward. It ensures
that the two sets in a patch are disjoint (n.b. figure 12), and performs cosmetic surgery on
actor actions, inserting behaviorλ∪ds

and storing the function term in the initial state. The
final metafunction from the figure, seq, reconciles the cons lists computed in λ∪ds with the
syntactic sequences manipulated by the dataspace coordination model.

Running λ∪ds Programs. We finally have all the tools to define the meaning of a λ∪ds
program, dataspace τc M, with the metafunction initialize (figure 17).

The function evaluates the given expression, yielding a list of actor descriptions. The
seq metafunction translates the cons list to a syntactic sequence, (−→·). Each actor value in

7 Though the syntax of patches is the same in both models, we include b c (pronounced “lower”) to
point out where such a translation would need to happen in an implementation.

ZU064-05-FPR jfp 13 May 2020 10:44

Typed Dataspace Actors 31

initialize : Init−→ Config+Error

initialize(dataspace τc M) =

{
errords if v = errorη

boot(dataspace
#”
S) otherwise

where v = eval(M)
−→va = seq(v)
−→
S =
−−→
dvae

Fig. 17. λ∪ds Programs as Dataspaces

the resulting sequence is lifted (d e) to yield an initial actor action; boot-ing the dataspace
containing the actor actions yields the program’s starting configuration. At this point,
reduction proceeds via −→ds.

5.3 Properties

With a complete operational description of λ∪ds dataspace systems in hand, we may now
show that the soundness theorem of section 4.4 generalizes to complete programs. Crit-
ically, λ∪ds lives up to the interface imposed on actors by the semantics of section 5.1,
and dataspace routing matches the expectations encoded in the type rules of λ∪ds from
section 4.3. In conjunction with a fairness property, the communication structure of a λ∪ds
program matches static expectations.

Rule T-ACTOR (figure 9) models dataspace routing by relating the assertions of interest
made by an actor to the events it receives. Hence, we need to relate an individual actor’s
received events and performed actions across temporally distant reductions.

The relationship crucially relies on the fundamental theorem of dataspace event dispatch:
a dataspace applies an actor’s behavior function to only those assertions in which the actor
has expressed a prior interest.

Theorem 6 (Soundness of Routing (Garnock-Jones, 2017, p. 64)). If C0 −→+
ds Cn where

Cn is a configuration that is about to dispatch an event to actor `:

[· ; Rn ;
#”
AI(` 7→ #”e ′n(π

+/π
−). (f ,u). #”a ′n)

”
AQ]

then there is some Ci, i< n, with Ci = [
”

(k,a) ; Ri ;
#”
A] such that the actor has a stated interest

in each delivered assertion:

{(`,observe c) | c ∈ (π+∪π
−)} ⊆ Ri

�
Next, we show that dataspace routing preserves the type associated with assertion sets.

Lemma 7 (Preservation of Types Across Dataspace Reductions). The set of assertions π

held by a dataspace formed with communication type τc have the property π |= τc at each
reduction step.

Proof The dataspace operations on assertion sets are set union, intersection, and sub-
traction, all of which preserve types. �

The validity of T-ACTOR follows.

ZU064-05-FPR jfp 13 May 2020 10:44

32 S. Caldwell and T. Garnock-Jones and M. Felleisen

Lemma 8 (Safe Event Dispatch). If the dataspace routes a patch π+/π− to an actor with
a behavior function of type (Patch τin τin,τstate) → (List (Action τout τc),τstate) then `
π+/π− : Patch τin τin.

Proof Dataspaces compute the intersection of assertions to determine which actors to
invoke on which events. The type system accounts for this intersection in rule T-ACTOR,
which predicts that events delivered to the actor correspond to a type covered by the domain
of the behavior function. Theorem 6 plus lemma 7 jointly verify that the semantics of
dataspace routing matches this expectation. �

The function behaviorλ∪ds
is the main link connecting the two parts of the dataspace

model; it relies on correctness lemmas for several helper functions.

Lemma 9 (Typed Lists Translate to Typed Sequences). If ` v : List τ then seq(v) =−→vi

and
−−−−−−→
` vi : τ .

Proof By routine induction. �

Lemma 10 (Typed Action Translation). If ` v : Action τ σ then there exists an a such
that dve= a.

Proof Immediate from behaviorλ∪ds
∈ BehFun, which lemma 11 proves. �

We may now show that typed actors are well-behaved, always yielding a suitable answer
in response to a dispatched event.

Lemma 11 (Linking). behaviorλ∪ds
∈ BehFun.

Proof First, we show that the term Mdispatch =(v f (bec,vs)) is always well-typed. Though
we do not formally state this property, it is self-evident that dataspace reductions handle an
actor’s private state appropriately; the behavior function is always invoked with the most
recently returned, or initial, value. Therefore, the second argument of behaviorλ∪ds

is always
a pair (v f ,vs). Moreover, these pairs originate from a well-typed actor term passed to d e.
Also, behaviorλ∪ds

only ever updates the second element of the pair, leaving the function
term v f unchanged. We may then conclude that v f came from a well-typed actor term,
and by inversion of T-ACTOR it has type

(Patch τin τin,τstate) → (List (Action τout τc),τstate)

Since vs is either the initial state from the actor term or the second element of a pair
returned by v f , it must have type τstate. By Lemma 8, each delivered patch π+/π−, and
consequently bec, has type Patch τin τin. Therefore

` Mdispatch : (List (Action τout τc),τstate)

Second, by theorem 5, evaluation yields either a value of a suitable type or an error. That
is, either eval(Mdispatch) = v and ` v : (List (Action τout τc),τstate) or eval(Mdispatch) =

errorprim.

• Case: eval(Mdispatch) = errorprim. The result of behaviorλ∪ds
is then errords. Since

errords ∈ Error, behaviorλ∪ds
yields a suitable answer.

• Case: eval(Mdispatch) = v. By inversion, v = (vlist,v′s) where ` v′s : τstate and `
vlist : List (Action τout τc). By lemmas 9 and 10, the function produces a vector
of actions: dseq(vlist)e ∈

−−−−→
Action. �

ZU064-05-FPR jfp 13 May 2020 10:44

Typed Dataspace Actors 33

Technically, behaviorλ∪ds
is not a total function matching the signature of BehFun; it is

only defined on events of the expected type, and private states that are pairs of the expected
shape. Figure 12 requires behavior functions be total over the entire Event×Val space.
However, we have shown that the function is only ever invoked on the portion of the
space for which it is defined. Therefore, it meets the actual requirement of the dataspace
semantics of always terminating with a suitable answer in response to a dispatched event.

When all individual actors meet the interface, dataspaces enjoy a progress property.

Lemma 12 (Progress of Dataspace Configurations (Garnock-Jones, 2017, p. 61)). Data-
space configurations are either inert or may further reduce. �

We can now show that the soundness of λ∪ds extends to complete dataspace programs:
actors fail only due to partial primitives. That is, during communication, errors arise only
from the interpretation of messages, not their shape.8

Theorem 13 (System Soundness). If ` dataspace τc M, then either

• initialize(dataspace τc M) = errords; or
• initialize(dataspace τc M) = Σ, where

— Σ−→∗ds ΣI; or
— for all Σ′, Σ−→∗ds Σ′ implies there exits Σ′′ such that Σ′ −→ds Σ′′

Proof By inversion of ` dataspace τc M, it must be the case that

` M : List (Actor τc)

Since λ∪ds is sound (theorem 5), either

• eval(M) = errorprim; or
• eval(M) = v and ` v : List (Actor τc).

In the first case, initialize(dataspace τc M) = errords; the program fails during startup,
an acceptable outcome. Otherwise, evaluation yields a value v with a list type.

By lemma 9, seq(v) = −→va with
−−−−−−−−−−−−→
` va : Actor τc. By inversion of the type derivation,

each value in the sequence is an actor action, i.e. −−−−−−−−−−−−−−−→va = actor τc v f vs π .
The next step translates each λ∪ds actor specification to a dataspace process, which ac-

cording to lemma 11 is compatible with the semantics of section 5.1:

dactor τc v f vs πe= actor behaviorλ∪ds
(v f ,vs) π

and boot produces an initial actor state. Finally, lemma 12 shows that such states either
reduce to inertness or without end. �

Finally, λ∪ds dataspace systems are fair. Programmers may rely on the fact that a ready
actor will eventually run.

Theorem 14 (Fairness). If an actor is non-quiescent, it will execute within a finite number
of reductions.

8 Dataspace programs are also deadlock free; section 6 discusses the usefulness of this fact.

ZU064-05-FPR jfp 13 May 2020 10:44

34 S. Caldwell and T. Garnock-Jones and M. Felleisen

Proof The reduction semantics of dataspaces are deterministic (Garnock-Jones, p.62)
given the fixed scheduling rule. Coupled with terminating actor behaviors (lemma 11), and
a round-robin scheduling policy (figure 14; appendix A.3, definition 29), any non-quiescent
actor eventually finds itself in the hole of an evaluation context. �

6 Assessment

A typical type system offers a number of attractive benefits: a design guide, documentation,
and IDE support. Soundness adds reliability in different ways: compatibility checking of
specification (type) and implementation (code), error prevention, debugging, and optimiza-
tion. Thus far, no type system captured tuple-space-style communication precisely and
none with soundness proofs. While the typical type system advantages accrue to ours, the
error prevention and detection aspect deserves a special assessment.

In terms of error prevention, the type system provably eliminates many standard prob-
lems and three kinds of novel faults specific to the dataspace model of actor computation.
(1) Types guarantee the absence of mistakes related to the shape of exchanged data, up to
the expressivity of the base type system. (2) The type system tracks the structure of infinite
assertion sets and statically detects when an actor selects a possibly infinite subset. Thus,
the system prevents cases where data produced by a faulty component leads to the crash of
a well-behaved one. (3) The presented types eliminate the possibility of actors that diverge
while handling state-change notifications, an issue that thus far had to be handled outside
the language.

Our type system also permits the imposition of stringent constraints on specific actors.
Technically speaking, actor subtyping allows a developer to place individualized con-
straints on the assertions of each actor in a program. By the soundness property, we know
that every assertion an actor makes falls within the range type of its behavior function. The
contrapositive of this fact is useful as well: an assertion can never be made by the actor
unless explicitly allowed by the range type. Using this ability, we can verify some aspects
of well-behaved actors, such as only engaging in conversations fitting their role.

Some aspects of the dataspace communication model are beyond the expressive power
of our type system. While typed actors agree on a vocabulary, λ∪ds does not provide any
further guarantee about dataspace exchanges. The type system checks only that assertions
are safe to utter, but not that they contribute meaningfully to the conversation. Protocols
may come with temporal constraints, requirements on the maximum (or minimum) number
of related assertions that may exist, and restrictions on data beyond simple types—that an
identifier is globally unique, a sequence number is greater than its predecessor, and so on.
All of these properties are beyond the power of our structural type system.

Type systems for concurrency often prove deadlock-freedom as a primary result, but the
situation in λ∪ds is a bit murkier. Dataspace communication is completely indirect, so in one
sense all programs are deadlock-free. However, deadlock-like scenarios may arise. Actor
A waits for an assertion x before responding with an assertion y, while actor B waits for
an assertion of y before making an assertion x. The type system of λ∪ds is no help in this
situation. The types of behavior functions capture only the entire input/output possibilities
of an actor. Therefore, they cannot track the dependencies between particular assertions
needed to detect the error in this program. In ongoing work, we are experimenting with a

ZU064-05-FPR jfp 13 May 2020 10:44

Typed Dataspace Actors 35

domain-specific language for dataspace actors that lends itself to tracking the relationship
between particular types of assertions.

Finally, we have emphasized the importance of termination for actor systems. In reality,
an actor that provably finishes computing after four billion years is just as problematic as
one that diverges. The truly desired property for actors is responsiveness. Termination is a
compromise guarantee, albeit one that is particularly useful for language models. Advances
in reasoning about worst-case execution bounds (Leivant, 2001; Hoffmann & Shao, 2015)
may provide a solution to this aspect of dataspace actors.

Note Prior work on dataspace actors emphasizes the ability to nests collections of actors.
Technically, an actor may not only spawn new actors but also new dataspaces by sending a
dataspace action. This nested dataspace operates as if it were an actor in the current
one. Nested dataspaces offer a means of spatially separating actors and conversations.
Distinguished constructors route assertions between parent and child dataspaces. We omit
this feature from this presentation, as it neither alters the shape of actor interactions nor
poses an additional challenge for the design of our type system. Appendix B provides an
overview of what is needed to accommodate arbitrary nesting of dataspaces.

7 Implementation and Experiences

Designing a type system is an exercise in trade-offs. Every guarantee places a burden on
the language implementer and a restriction on its programmers; each simplification risks
losing desired precision. Implementing the proposed system as an extension to the existing
Racket prototype allows us to explore these choices on realistic examples within a tight
design feedback loop.

In summary, we found that:

1. The type system lends itself to a straightforward implementation.
2. The restrictions are not burdensome. Typed programs may be written in much the

same style as their untyped counterparts, modulo the insertion of type annotations.
3. For the small programs in our design feedback loop, pattern matching on incoming

assertions suffices to eliminate union types.

Dataspace Types in Action. The examples and snippets from section 3 are written in the
concrete syntax of our implementation, which extends the untyped Racket prototype. As
the chat server example illustrates, the typed program in figure 5 is largely the same as
the untyped one in figure 3. The major difference is that the programmer must write down
the communication type, though even the design of untyped programs requires similar,
informal documentation of the shape of assertions in the dataspace.

Dataspace Types as Macros. The type checker is defined across a collection of syn-
tax transformers that employ the types-as-macros technique (Chang et al., 2017). In this
scheme, the expansion of a typed term produces both an elaboration—untyped syntax
implementing the desired behavior—and its type. Transformers obtain the types of sub-
terms through recursive traversals (Flatt et al., 2012) and perform some analysis before
finally computing their own type and elaboration. Chang’s Turnstile library manages much

ZU064-05-FPR jfp 13 May 2020 10:44

36 S. Caldwell and T. Garnock-Jones and M. Felleisen

of the required bookkeeping, providing a notation for writing rules that resembles the
standard conventions of figure 9.

1 (define-typed-syntax (actor τ-c beh st0 as0) �
2 #:fail-unless (flat-type? #’τ-c)
3 "Communication type must be first-order"
4 [` beh � beh- ⇒ (→ (Patch τ-in τ-in) τ-st
5 (Instruction τ-st τ-out τ-act))]
6 [` st0 � st0- ⇐ τ-st]
7 [` as0 � as0- ⇐ (AssertionSet τ-out)]
8 #:fail-unless (<: #’τ-out #’τ-c)
9 "Actor makes assertions not allowed in this dataspace"

10 #:fail-unless (<: #’(Actor τ-act)
11 #’(Actor τ-c))
12 "Spawned actors not allowed in this dataspace"
13 #:fail-unless (<: (∩ (strip-? #’τ-out) #’τ-c) #’τ-in)
14 "Not prepared to handle all inputs"
15 ---
16 [` (untyped:actor beh- st0- as0-) ⇒ (Actor τ-c)])

Fig. 18. T-ACTOR as a Turnstile type-and-elaboration rule

Figure 18 provides a representative sample, lightly edited for presentation, from the
implementation. The code defines the typed (actor τ-c beh st0 as0) form following
the skeleton of the T-ACTOR rule from figure 9. The body (lines 2–14) is a sequence of
premises, which come in two forms. The first, #:fail-unless, performs error checking.
On lines 2–3, the rule checks that the given annotation sensibly describes assertions. The
flat-type? procedure implements the flat judgment. If the check fails, the rule signals
an error using the supplied message. The second type of premise inspects the subterms of
the given syntax, utilizing Turnstile’s support of bidirectional checking (Pierce & Turner,
1998) to either infer (⇒) or check (⇐) types.9 The conclusion of the rule (line 16) specifies
the elaboration as the untyped actor form applied to the elaboration of the behavior,
state, and assertion terms and synthesizes the type of the term. Neither the conclusion
nor the premises mention the environment, Γ, which is created and accessed implicitly and
hygienically in this framework.

8 Related Work

The dataspace model of coordination and computation seeks to explore a mechanism for
replicating knowledge among actors that sits between the complete isolationist approach
of message sending on one end and the fully-shared memory one on the other end. In
this spirit, Gelernter’s tuple spaces and the recently derived Fact Spaces have the closest
resemblance to dataspaces. Hence this section compares the type systems of these latter two
approaches with the one we have imposed on dataspace actors here. In short, integration
of these models with typed programming languages has never provided a sound model of
communication, as our system does.

9 The Instruction type constructor is a convenience for accommodating both transition and
quit actions.

ZU064-05-FPR jfp 13 May 2020 10:44

Typed Dataspace Actors 37

We also consider approaches for traditional actor systems and other coordination mod-
els, as well as session types, a particularly well-known approach to behavioral typing.
Behavioral type systems typically track explicit communication actions, such as sending
a message along a channel. The structure of such communication actions may then be
checked for consistency between components, often resulting in strong static guarantees.
The underlying communication model of dataspaces, with anonymous components pub-
lishing and subscribing (Eugster et al., 2003) to relevant information, lacks such explicit
interaction. We therefore consider behavioral types for dataspaces a direction for future
work, and so review developments that have some promise in their application to data-
spaces.

Fact Spaces and AmbientTalk. The Fact Spaces model (Mostinckx et al., 2007), and es-
pecially its prototype implementation CRIME, is similar to the dataspace model. Programs
react to both the appearance and disappearance of facts from a shared repository. Reactions
are programmed in a logic coordination language, computing new facts based on current
facts, and recording (implicitly) the dependencies between facts and application actions.

The Fact Spaces model has been integrated with the AmbientTalk language (Van Cutsem
et al., 2014). AmbientTalk is a traditional Actor model (Hewitt et al., 1973; Agha, 1986)
language in the mold of E (Miller et al., 2005). In E and AmbientTalk, objects are organized
into vats; each vat runs its own event loop, dispatching incoming messages to the contained
objects and running the corresponding method to completion. In addition to point-to-
point messaging, AmbientTalk provides a publish/subscribe communication mechanism
via topic (type) tags. Topic tags form a small nominal type system but provide no structural
guarantees.

Fact Spaces and AmbientTalk are based on, and always implemented in, untyped lan-
guages. Consequently, little can be guaranteed about the behavior of programs ahead of
time. Ambient contracts (Scholliers et al., 2011) explore, among other things, protocol en-
forcement for AmbientTalk programs. In addition, ambient contracts provide functionality
related to service discovery and recovering from peer disconnections.

Tuple Spaces. Linda (Gelernter, 1985; Carriero et al., 1994) introduced the tuple space
model of coordination. Linda resembles a blackboard style system, where processes de-
posit messages in the shared space that are later read and removed by other processes.
LIME (Murphy et al., 2006) is an extension of the tuple space model where processes
register reactions, handler functions that run on matching tuples as they appear but, notably,
not as they disappear from the space.

Linda implementations with a typed base language tend to use a single Tuple type for
describing items retrieved from the tuple space (Picco et al., 2005; Jav, 2017; Wyckoff
et al., 1998). Such unityped interfaces require casting to a more specific type after read,
with the potential to fail due to type mismatches. Gigaspaces (gig, 2017) parameterize the
type of tuple space operations such that reading a tuple does not require a cast, but do not
associate a type with the entire space. Consequently, there is no assurance that the type
is sensible, i.e., a tuple of that type can ever be put in the space. Blossom (van der Goot,
2000) is a tuple space implementation that fixes the type of the entire tuple space, but,
being based on C++, is unsound.

ZU064-05-FPR jfp 13 May 2020 10:44

38 S. Caldwell and T. Garnock-Jones and M. Felleisen

Actor and Actor-like Languages. Point-to-point actor languages have been the subject of
a number of different type systems and analyses. Though the differences in the underlying
communication model makes direct comparisons uninformative, there are some similarities
that may allow the results of one to carry-over to the other in a modified form.

The Conversation Calculus (Vieira et al., 2008) shares notable similarities with data-
spaces in its focus on multi-party interaction between anonymous components. In the con-
versation calculus, communication takes place within the context of a distinct, potentially
nested, conversation name. A process initiates a conversation by instantiating a service
name provided by another process. Much like in dataspaces, communication within a con-
versation is anonymous: routing finds both an attempt to send and to receive a message with
the same tag within a conversation. Conversation types (Caires & Vieira, 2009) describe
the sequence of messages exchanged during each instantiation of a conversation. The type
system provides flexibility in how a conversation type decomposes into multiple process
types, as well as how multiple process types may merge into a conversation type, while
providing the guarantee of soundness and deadlock-freedom. A significant difference that
prevents their immediate application to dataspaces is the persistent nature of assertions as
well as multicast-by-default communication.

The recently developed mailbox calculus and its type system (de’Liguoro & Padovani,
2018) may also have an application to dataspaces and vice versa. Though expressive enough
to describe different communication mechanisms, the mailbox calculus is tailored partic-
ularly to actor-like communication; the capability to receive from a mailbox is unique,
while any number of different components may send to a mailbox. Types describe the
potential contents of a mailbox with patterns, which take the form of commutative regular
expressions. Like assertions, such patterns do not describe the identity of the underlying
components, and grant a degree of agnosticism towards the multiplicity of a message.
Checking mailbox types relies on computing the pattern describing a mailbox after a
message has been received, unlike the persistent nature of assertions in a dataspace.

He et al. (2014) proposed a design for Typed Akka, a more traditional message-passing
actor framework for Scala. Typed Akka actors specify a particular type for the messages
that they receive. While we emphasize union types for describing the assertions communi-
cated between dataspace actors, Typed Akka seeks to work within the Scala type system.
Consequently, it cannot utilize unions, even though they naturally express the underlying
communication.10

Others have considered static assurance of actor isolation through types (Srinivasan &
Mycroft, 2008; Haller & Loiko, 2016; Clebsch et al., 2015) or verification (Summers &
Müller, 2016). These approaches focus on isolating mutable heap references among actors,
versus partial failure of components discussed here. The dataspace model is functional,
with actors communicating strictly first-order values, obviating the need for tracking own-
ership of mutable heap values.

Session Types. Session type systems (Honda et al., 1998) provide strong guarantees about
communication between concurrent components. Theoretical variants are based on the π-

10 The next version of the language, Scala 3, is scheduled to include union types (Dotty Compiler
Team, 2019), opening the possibility of more expressive types for actors.

ZU064-05-FPR jfp 13 May 2020 10:44

Typed Dataspace Actors 39

calculus (Milner, 1999) and describe the bidirectional flow of values between each pair of
processes. Multiparty session types (Honda et al., 2008) cover pairwise communication
within a delineated group of processes.

Over the past three decades, the π-calculus community has demonstrated that the cal-
culus can encode many communication and coordination mechanisms. In this spirit, it is
possible to encode dataspace programs in the channel-based model of the π-calculus. The
most natural encoding represents the dataspace itself as a process and then links each actor
via channels to this “dataspace process.” This central process holds the table of current
assertions and sends notifications to all connected actors of updates to their interests,
receiving back a description of the actors’ next actions, and so on. In short, this encoding
would mimic the semantics of dataspaces (section 5.1), with notify and gather supplanted
by analogous channel send and receive operations.

Furthermore, sessions-type researchers have succeeded in designing suitable type sys-
tems for many of these π-calculus encodings. Here is a sketch of a session type system for
the dataspace encoding. From the perspective of a dataspace process with communication
type τc, the protocol along each channel would resemble a function call corresponding to
our signature for behavior functions:11

!(Event τc).?(List (Action τout τc))

Where we use !τ to mean sending a message of type τ along the channel, ?τ for receive,
and τ.τ for sequencing.

A close look reveals that a type system for an encoding is un-enlightening for the
designers of typed tuple space languages and developers who use such languages. The
clearest distinction concerns the routing process itself, especially how it informs the design
of the type system. Our type system refines the communication types to mirror the idea
that actors receive only messages that they asked for. Technically, the type of events an
actor must handle, τin, is related to τc and the type of interests in τout. Plain session types
obscure this connection, because the dataspace process must treat every connected actor in
a uniform manner. In other words, the type system of the encoding lacks the modicum of
dependency baked into our own type system.

This observation suggests the use of Dependent session types (Toninho et al., 2011).
With dependent session types, a developer can prove facts about dataspace routing on
a per-actor basis. We consider this approach less useful than our proposed type system,
even if it is equally expressive in the context of a π-calculus encoding. Most critically, the
type system can no longer guide the working programmer to a natural type. Instead, this
burden is shifted to the programmer, who must articulate these relationships as dependent
types on a per-actor basis. We consider this an excessively large burden on the aspiring
dataspace programmer, because the programmer would have to mentally shift back and
forth between the encoding and the direct design goal. By comparison, our type system
directly incorporates an abstraction of the underlying routing mechanism—embodied in
the predict-routing metafunction—and thus expresses type constraints in the linguistic
domain in which the developer actually programs.

11 In this encoding, each actor process would maintain its private state value to obviate the need for
an existential quantifier.

ZU064-05-FPR jfp 13 May 2020 10:44

40 S. Caldwell and T. Garnock-Jones and M. Felleisen

Nevertheless we conjecture that translating dataspaces into sessions and channels may
provide ideas for expressing and checking dataspace protocols. A particularly challenging
aspect will be the broadcast-like, time-enduring nature of dataspace assertions. We expect
that the recent research on session types for messaging actors (Mostrous & Vasconcelos,
2011; Crafa, 2012) might be a good starting point for this line of investigation.

9 Conclusion

No single coordination model can perfectly express all patterns of communication. The
tuple space family of models emphasizes the need for sharing information among a group
of actors, a need that is often overlooked by point-to-point models, even though the latter
might be able to encode the former with patterns. The dataspace model seeks to revive
interest in addressing this need for sharing, and as we have argued (section 2.2) offers a
number of advantages for programming group conversations.

Tuple space languages have never featured a type system that captures the structure of
exchanged data, however. As a consequence, programmers lose the advantages that types
play in design, error prevention, documentation, optimization, and so on. Moreover, a lack
of types governing communication can have an especially pernicious effect on actor-like
systems. Without types, a simple data-format error in a message can cause the crash of an
otherwise well-behaved actor, undermining the principle of fault-isolation.

This paper presents a structural type system for dataspace actors, the first such in the
tuple space family. The new type system accounts for the novel communication medium
and completely eliminates data-format errors from the model. Practically speaking, this
step simplifies the task of actor fault detection and recovery.

Experience with a prototype implementation of the type system suggests that it supports
a range of protocols and lends itself to practical use. To cope with complex actors, the
type system might need additional tools for programming with unions, such as occurrence
typing, and reasoning based on type-state (Strom & Yemini, 1986). Looking beyond the
internal structure of actors, dataspace protocols stand to benefit from the checking of
behavioral properties as well as structural ones.

Given the similarities between dataspaces and Fact Spaces, it should be straightforward
to adapt the type system to the Fact Space model and its implementations. Furthermore, the
type system, by construction, has a clearly defined, narrow interface to the dataspace mech-
anism (section 5). Hence, we should also be able to adapt our type system for dataspaces
to similar coordination systems for actors, such as tuple spaces and pub/sub layers.

Acknowledgments The authors thank Stephen Chang (Northeastern, UMass Boston) for
his Turnstile package and comments on early drafts of this paper. The anonymous review-
ers helped clarify many passages of the original submission. The research was partially
supported by CISCO and NSF grants SHF 1763922 and 1518844.

References

(2017). Gigaspaces. https://www.gigaspaces.com. Accessed: 2017-10-19.

ZU064-05-FPR jfp 13 May 2020 10:44

Typed Dataspace Actors 41

(2017). JavaspacesTM service specification, version 2.3 .
https://river.apache.org/release-doc/current/specs/html/js-spec.html. Ac-
cessed: 2017-01-24.

Agha, Gul. (1986). Actors: A Model of Concurrent Computation in Distributed Systems.
Massachusetts: MIT Press.

Armstrong, Joe. (1994). Programming Erlang. The Pragmatic Programmers.
Armstrong, Joe. 2003 (Dec). Making Reliable Distributed Systems in the Presence of Software

Errors. PhD dissertation, Royal Institute of Technology, Stockholm.
Caires, Luı́s, & Vieira, Hugo Torres. (2009). Conversation types. Pages 285–300 of: ESOP.
Carriero, Nicholas J, Gelernter, David, Mattson, Timothy G, & Sherman, Andrew H. (1994). The

Linda alternative to message-passing systems. Parallel computing, 20(4), 633–655.
Chang, Stephen, Knauth, Alex, & Greenman, Ben. (2017). Type systems as macros. Pages 694–705

of: POPL.
Clebsch, Sylvan, Drossopoulou, Sophia, Blessing, Sebastian, & McNeil, Andy. (2015). Deny

capabilities for safe, fast actors. International Workshop on Programming Based on Actors,
Agents, and Decentralized Control. AGERE! 2015.

Clocksin, W.F., & Mellish, C.S. (1981). Programming in prolog. Springer.
Crafa, Silvia. (2012). Behavioural types for actor systems. Technical report.
de’Liguoro, Ugo, & Padovani, Luca. (2018). Mailbox types for unordered interactions. ECOOP.
Dotty Compiler Team. (2019). Union types - more details.
https://dotty.epfl.ch/docs/reference/new-types/union-types-spec.html.
Accessed: 2019-12-13.

ECMA. (2015). ECMA-262: ECMAScript 2015 language specification. Sixth edn. ECMA
International.

Englemore, Robert, & Morgan, Anthony (Eds). (1988). Blackboard systems. Addison-Wesley.
Eugster, Patrick Th., Felber, Pascal A., Guerraoui, Rachid, & Kermarrec, Anne-Marie. (2003). The

many faces of publish/subscribe. ACM Computing Surveys, 35(2), 114–131.
Felleisen, Matthias, Findler, Robert Bruce, & Flatt, Matthew. (2009). Semantics engineering with plt

redex. Mit Press.
Flatt, Matthew, & PLT. (2010). Reference: Racket. Tech. rept. PLT-TR-2010-1. PLT Inc.
http://racket-lang.org/tr1/.

Flatt, Matthew, Culpepper, Ryan, Darais, David, & Findler, Robert Bruce. (2012). Macros that work
together: Compile-time bindings, partial expansion, and definition contexts. Journal of Functional
Programming, 22(2), 181–216.

Garnock-Jones, Tony. 2017 (Dec). Conversational Concurrency. PhD dissertation, Northeastern
University.

Garnock-Jones, Tony, & Felleisen, Matthias. (2016). Coordinated concurrent programming in
Syndicate. Pages 310–336 of: ESOP.

Garnock-Jones, Tony, Tobin-Hochstadt, Sam, & Felleisen, Matthias. (2014). The network as a
language construct. Pages 473–492 of: ESOP.

Gelernter, David. (1985). Generative communication in Linda. ACM trans. program. lang. syst.
Girard, Jean-Yves. (1971). Une extension de l’interpretation de Gödel a l’analyse, et son application

a l’elimination des coupures dans l’analyse et la theorie des types. Studies in logic and the
foundations of mathematics, 63, 63–92.

Haller, Philipp, & Loiko, Alex. (2016). LaCasa: Lightweight affinity and object capabilities in Scala.
Pages 272–291 of: OOPSLA.

He, Jiansen, Wadler, Philip, & Trinder, Philip. (2014). Typecasting actors: from Akka to TAkka.
Pages 23–33 of: Proceedings of the Fifth Annual Scala Workshop.

ZU064-05-FPR jfp 13 May 2020 10:44

42 S. Caldwell and T. Garnock-Jones and M. Felleisen

Hewitt, Carl, Bishop, Peter Boehler, Greif, Irene, Smith, Brian Cantwell, Matson, Todd, & Steiger,
Richard. (1973). Actor induction and meta-evaluation. POPL.

Hoffmann, Jan, & Shao, Zhong. (2015). Automatic static cost analysis for parallel programs. Pages
132–157 of: ESOP.

Honda, Kohei, Vasconcelos, Vasco T., & Kubo, Makoto. (1998). Language primitives and type
discipline for structured communication-based programming. Pages 122–138 of: ESOP.

Honda, Kohei, Yoshida, Nobuko, & Carbone, Marco. (2008). Multiparty asynchronous session types.
Pages 273–284 of: POPL ’08.

Jeuring, Johan. (1995). Polytypic pattern matching. Pages 238–248 of: FPCA ’95.
Leivant, Daniel. (2001). Termination proofs and complexity certification. Pages 183–200 of:

Theoretical Aspects of Computer Software.
Miller, Mark S., Tribble, E. Dean, & Shapiro, Jonathan. (2005). Concurrency among strangers. Pages

195–229 of: Int. Symp. on Trustworthy Global Computing.
Milner, Robin. (1999). Communicating and Mobile Systems: the pi Calculus. Cambridge University

Press.
Mostinckx, Stijn, Scholliers, Christophe, Philips, Eline, Herzeel, Charlotte, & De Meuter, Wolfgang.

(2007). Fact spaces: Coordination in the face of disconnection. Pages 268–285 of: Proc.
COORDINATION 2007.

Mostrous, Dimitris, & Vasconcelos, Vasco T. (2011). Session typing for a featherweight erlang.
Pages 95–109 of: COORDINATION.

Murphy, Amy L., Picco, Gian Pietro, & Roman, Gruia-Catalin. (2006). Lime: A coordination model
and middleware supporting mobility of hosts and agents. Acm Trans. on Software Engineering
and Methodology, 15(3), 279–328.

Newell, Allen, & Simon, Herbert A. (1972). Human problem solving. Prentice Hall.
Picco, Gian Pietro, Balzarotti, Davide, & Costa, Paolo. (2005). LighTS: A lightweight, customizable

tuple space supporting context-aware applications. Pages 413–419 of: Proc. SAC ’05.
Pierce, Benjamin C. (1991). Programming with intersection types, union types, and polymorphism.

Tech. rept. Technical Report CMU-CS-91-106, Carnegie Mellon University.
Pierce, Benjamin C., & Turner, David N. (1998). Local type inference. Pages 252–265 of: POPL.
Scholliers, Christophe, Harnie, Dries, Tanter, Eric, De Meuter, Wolfgang, & D’Hondt, Theo. (2011).

Ambient contracts: verifying and enforcing ambient object compositions à la carte. Personal and
ubiquitous computing, 15(4), 341–351.

Srinivasan, Sriram, & Mycroft, Alan. (2008). Kilim: Isolation-typed actors for Java. Pages 104–128
of: ECOOP.

Strom, Robert E, & Yemini, Shaula. (1986). Typestate: A programming language concept for
enhancing software reliability. IEEE Transactions on Software Engineering, 157–171.

Summers, Alexander J., & Müller, Peter. (2016). Actor services: Modular verification of message
passing programs. ESOP.

Tasharofi, Samira, Dinges, Peter, & Johnson, Ralph E. (2013). Why do scala developers mix the
actor model with other concurrency models? ECOOP.

Tobin-Hochstadt, Sam, & Felleisen, Matthias. (2008). The design and implementation of Typed
Scheme. Pages 395–406 of: POPL.

Toninho, Bernardo, Caires, Luı́s, & Pfenning, Frank. (2011). Dependent session types via
intuitionistic linear type theory. PPDP.

Van Cutsem, Tom, Gonzalez Boix, Elisa, Scholliers, Christophe, Lombide Carreton, Andoni, Harnie,
Dries, Pinte, Kevin, & De Meuter, Wolfgang. (2014). AmbientTalk: programming responsive
mobile peer-to-peer applications with actors. Computer Languages, Systems & Structures, 40(3-
4), 112–136.

ZU064-05-FPR jfp 13 May 2020 10:44

Typed Dataspace Actors 43

van der Goot, Roel. (2000). High performance linda using a class library. PhD dissertation, Erasmus
University Rotterdam.

Vieira, Hugo T., Caires, Luı́s, & Seco, João C. (2008). The conversation calculus: A model of
service-oriented computation. Pages 269–283 of: ESOP.

Wright, Andrew K, & Felleisen, Matthias. (1994). A syntactic approach to type soundness.
Information and Computation, 115(1), 38–94.

Wyckoff, P., McLaughry, S. W., Lehman, T. J., & Ford, D. A. (1998). T Spaces. IBM Syst. J., 37(3),
454–474.

ZU064-05-FPR jfp 13 May 2020 10:44

44 S. Caldwell and T. Garnock-Jones and M. Felleisen

A Auxiliary Metafunction Definitions

A.1 λds Reduction Metafunctions

The reduction semantics of λds (figure 7) mentions several metafunctions that create and
analyze assertion sets. This section collects their formal definitions.

Definition 15. The make-set metafunction creates an assertion set from a vector of values:

make-set :
−→
Val−→partial ASet

make-set(−→v) =
⋃−→

π where −→π =
−−−−−→
interp(v)

Definition 16. The interp function maps λds values to sets of assertions:

interp : Val−→partial ASet
interp(?) = Assertion
interp(b) = {b}

interp(m(−→v)) = {m(
−→
v′) | (

−→
v′) ∈ interp((−→v))}

interp(()) = {()}
interp((v,

−→
v′)) = {(x,−→y) | x ∈ interp(v),(−→y) ∈ interp(

−→
v′)}

interp(cons v1 v2) = {cons x y | x ∈ interp(v1), y ∈ interp(v2)}
interp(observe v) = {observe x | x ∈ interp(v)}

Definition 17. The project function analyzes assertion sets with a pattern:

project : ASet × Val × Expr−→partial Expr
project(π, vp, M) = unroll(m) if m is finite

where m = {γ(M) | v ∈ π,match(v, vp) = γ}

Successful pattern matches yield substitutions:

Substitutions γ ∈ Sub = Var−→partial Val

where composition γ1 ◦ γ2 is defined in the usual manner.
Pattern matching is defined in straightforward fashion:

match : Val × Val−→partial Sub
match(v, $x : τ) = {(x,v)}

match(v,) = {}
match(b, b) = {}

match(observe v, observe vp) = match(v, vp)

match(m(−→vn), m(−→vpn)) = match((−→vn), (
−→vpn))

match((v,−→vn), (vp,
−→vpn)) = match(v, vp)◦ γ where match((−→vn), (

−→vpn)) = γ

match(cons v1 v2, cons vp1 vp2) = match(v2, vp2)◦ γ where match(v1, vp1) = γ

The unroll function translates the set of results to a list expression:

unroll : P(Expr)−→partial Expr
unroll(/0) = nil

unroll({M}]S) = cons M unroll(S)

While the unrolling operation does not specify the order of elements, we assume a
fixed ordering for the selection of elements to form the given set to make the definition
deterministic.

ZU064-05-FPR jfp 13 May 2020 10:44

Typed Dataspace Actors 45

A.2 λ∪ds Complete Type Judgment

The following definitions complete the type judgment for λ∪ds terms (section 4.3), providing
the rules elided from figures 9 and 11.

ZU064-05-FPR jfp 13 May 2020 10:44

46 S. Caldwell and T. Garnock-Jones and M. Felleisen

Definition 18. The following inference rules specify the complete type judgment of λ∪ds
terms, Γ ` M : τ , as well as the judgment ` I for complete dataspace programs.

flat(τc) ` Mboot : List (Actor τc)

` dataspace τc Mboot
T-DATASPACE

Γ ` x : τ τ <: σ

Γ ` x : τ
T-SUB

Γ ` Mbehavior : (Patch τin τin,τstate) → (List (Action τout τc),τstate)

Γ ` Mstate : τstate Γ ` Massertions : AssertionSet τout

τout <: τc predict-routing(τout,τc) <: τin flat(τc)

Γ ` actor τc Mbehavior Mstate Massertions : Actor τc
T-ACTOR

Γ ` Ms : AssertionSet τs Γ ` PAT : τp

safe(τs,τp) bindings(PAT) = Γ
′

Γ,Γ′ ` Mb : τb

Γ ` project Ms with PAT in Mb : List τb
T-PROJECT

−−−−−−−−→
Γ ` SK : τ

Γ ` {−→SK} : AssertionSet
⋃−→

τ
T-SET

π |= τ

Γ ` π : AssertionSet τ
T-π

Γ ` errorη : τ
T-ERROR

Γ,x : τ ` M : σ

Γ ` (λx : τ.M) : τ → σ
T-FUN

Γ ` M1 : τ1 → τ2 Γ ` M2 : τ1

Γ ` M1 M2 : τ2
T-APP

Γ(x) = τ

Γ ` x : τ
T-VAR

−−−−−−−→
Γ ` M : τ

Γ ` m(
−→
M) : m(−→τ)

T-MSG

−−−−−−−→
Γ ` M : τ

Γ ` (
−→
M) : (−→τ)

T-TUPLE

Γ ` M1 : List τ Γ ` M2 : σ

Γ ` cons M1 M2 : List (τ ∪σ)
T-CONS

Γ ` Mc : τa → τl → τa Γ ` Mn : τa Γ ` Ml : List τl

Γ ` fold Mc Mn Ml : τa
T-FOLD

Γ ` M : τ

Γ ` observe M : Observe τ
T-OBSERVE

Γ ` b : B(b)
T-BASE

−−−−−−−→
Γ ` M : τ ∆(p,−→τ) = σ

Γ ` p
−→
M : σ

T-PRIM

The judgment employs several additional metafunctions.

ZU064-05-FPR jfp 13 May 2020 10:44

Typed Dataspace Actors 47

Definition 19. The B and ∆ metafunctions assign sound types to primitive values and
operations:

B : BasicVal−→ BaseTy
∆ : Prim×−→τ −→partial τ

Definition 20. The bindings function extracts the type annotations from a pattern; repeated
occurrences of the same identifier result in shadowing:

bindings : Pat−→ Env
bindings($x : τ) = x : τ

bindings(m(
−−→
PAT)) = bindings((

−−→
PAT))

bindings((PAT,
−−→
PATn)) = bindings(PAT1),bindings((

−−→
PATn))

bindings(observe PAT) = bindings(PAT)
bindings(inbound PAT) = bindings(PAT)

bindings(outbound PAT) = bindings(PAT)
bindings() = · otherwise

The type rules also employ several auxiliary judgments.

Definition 21. The judgment Γ `P PAT : τ checks patterns separately, which allows us
to limit the expressions that may be used in patterns:

flat(τ)

Γ `P ($x : τ) : ($: τ)
P-CAPTURE

Γ `P : Discard
P-DISCARD

Γ ` M : τ flat(τ)

Γ `P M : τ
P-EXP

−−−−−−−−−−→
Γ `P PAT : τ

Γ `P (
−−→
PAT) : (−→τ)

P-TUPLE

−−−−−−−−−−→
Γ `P PAT : τ

Γ `P m(
−−→
PAT) : m(−→τ)

P-MSG
Γ `P PAT : τ

Γ `P observe PAT : Observe τ
P-SUB

Definition 22. Similarly, the judgment Γ `SK SK : τ checks assertion-set creation:

Γ `SK ? : ?
SK-STAR

Γ ` M : τ flat(τ)

Γ `SK M : τ
SK-EXP

−−−−−−−−−−→
Γ `SK SK : τ

Γ `SK (
−→
SK) : (−→τ)

SK-PROD

−−−−−−−−−−→
Γ `SK SK : τ

Γ `SK m(
−→
SK) : m(−→τ)

SK-MSG

Γ `SK SK : τ

Γ `SK observe SK : Observe τ
SK-SUB

ZU064-05-FPR jfp 13 May 2020 10:44

48 S. Caldwell and T. Garnock-Jones and M. Felleisen

Definition 23. The judgment flat(τ) holds for types that correspond to legal assertions:

flat(B)
F-BASE

−−−−−→
flat(τ)

flat(
⋃−→

τ)
F-UNION

−−−−−→
flat(τ)

flat((−→τ))
F-PROD

−−−−−→
flat(τ)

flat(m(−→τ))
F-MSG

flat(τ)

flat(List τ)
F-LIST

flat(τ)

flat(Observe τ)
F-OBSERVE

flat(?)
F-?

Definition 24. The judgment finite(τ) describes assertion types that do not contain any
uses of ?:

finite(B)
FIN-BASE

−−−−−−−→
finite(τ)

finite(
⋃−→

τ)
FIN-UNION

−−−−−−−→
finite(τ)

finite((−→τ))
FIN-TUPLE

−−−−−−−→
finite(τ)

finite(m(−→τ))
FIN-MSG

finite(τ)

finite(List τ)
FIN-LIST

finite(τ)

finite(Observe τ)
FIN-SUB

Definition 25. Rule T-PROJECT employs the safe(τ,σ) judgment to determine if project-
ing a pattern of type σ against a set of τ-typed assertions could yield an infinite or ill-typed
result:

ZU064-05-FPR jfp 13 May 2020 10:44

Typed Dataspace Actors 49

finite(τ) τ <: σ

safe(τ,$: σ)
PS-CAPTURE

safe(τ,Discard)
PS-DISCARD

safe(τ,B)
PS-BASE

−−−−−−−→
safe(τ,σ)

safe(τ,
⋃−→

σ)
PS-UNIONR

−−−−−−−→
safe(τ,σ)

safe(
⋃−→

τ ,σ)
PS-UNIONL

disjoint(τ,σ)

safe(τ,σ)
PS-DISJOINT

−−−−−−−→
safe(τi,σi)

safe((−→τ),(−→σ))
PS-TUPLE

−−−−−−−→
safe(?,τi)

safe(?,(−→τ))
PS-TUPLE?

−−−−−−−→
safe(τi,σi)

safe(m(−→τ),m(−→σ))
PS-MSG

−−−−−−−→
safe(?,τi)

safe(?,m(−→τ))
PS-MSG?

safe(τ,σ)

safe(List τ,List σ)
PS-LIST

safe(?,τ)

safe(?,List τ)
PS-LIST?

safe(τ,σ)

safe(Observe τ,Observe σ)
PS-SUB

safe(?,τ)

safe(?,Observe τ)
PS-SUB?

where

disjoint(τ,σ) = τ ∩̃ σ <: ⊥

Definition 26. Assertion sets π are given types through the judgment π |= τ:

ZU064-05-FPR jfp 13 May 2020 10:44

50 S. Caldwell and T. Garnock-Jones and M. Felleisen

π ⊂ Z ∃n.|π|= n

π |= Int
M-NUMBER

π ⊆ Assertion
π |= ?

M-?

π ⊆ {(−→xi) |
−−−→xi ∈ πi}

−−−−→
πi |= τi

π |= (−→τ)
M-PROD

π ⊆ {m(−→xi) |
−−−→xi ∈ πi}

−−−−→
πi |= τi

π |= m(−→τ)
M-MSG

π ⊆ {observe v | v ∈ π
′} π

′ |= τ

π |= Observe τ
M-OBSERVE

π ⊆ {nil}∪{cons x y | x ∈ π1,y ∈ π2} π1 |= τ π2 |= List τ

π |= List τ
M-LIST

π =
⋃

πi
−−−−→
πi |= τi

π |=
⋃−→

τ
M-UNION

In rule M-UNION, the premise π =
⋃

πi refers to (semantic) set union, while the conclusion⋃−→
τ uses (syntactic) type union. Furthermore, the rule does not require that the πis are

disjoint or non-empty.

Definition 27. The subtyping judgment τ <: σ relates compatible types:

τ <: τ
S-REFL

τ1 <: τ2 τ2 <: τ3

τ1 <: τ3
S-TRANS

flat(τ)

τ <: ?
S-?

τ2 <: σ2 σ1 <: τ1

τ1 → τ2 <: σ1 → σ2
S-FUN

−−−−−→
τ <: σ⋃−→

τ <: σ
S-UNIONSUB

∃i.τ <: σi

τ <:
⋃−→

σ
S-UNIONSUPER

τ <: σ predict-routing(τ,σ) <: τ

Actor τ <: Actor σ
S-ACTOR

τ <: σ

List τ <: List σ
S-LIST

τ <: σ

AssertionSet τ <: AssertionSet σ
S-SET

τ <: σ

Observe τ <: Observe σ
S-SUB

−−−−−→
τi <: σi

(−→τ) <: (−→σ)
S-PROD

−−−−−→
τi <: σi

m(−→τ) <: m(−→σ)
S-MSG

ZU064-05-FPR jfp 13 May 2020 10:44

Typed Dataspace Actors 51

A.3 Dataspace Coordination Metafunctions

The reduction semantics of dataspaces (section. 5.1) employs several metafunctions.

Definition 28. The ⊕ operation incorporates a patch into a dataspace’s stored knowledge:

⊕ : DS× (Lift(Loc)×Patch)−→ DS
R⊕ (k,πadd/πdel) = R∪{(k,c) |c ∈ πadd}−{(k,c) |c ∈ πdel}

Definition 29. The round-robin metafunction implements a scheduling policy, rotating the
actors in a configuration:

round-robin : EΣ×AState−→ Config

round-robin([· ; R ;
#”
AI(` 7→�)

”
AQ],Σ) = [· ; R ;

#”
AI

”
AQ (` 7→ Σ)]

ZU064-05-FPR jfp 13 May 2020 10:44

52 S. Caldwell and T. Garnock-Jones and M. Felleisen

B Extensions for Nested Dataspaces

As mentioned in section 6, dataspaces can be nested, forming a tree structure of actors.
To keep the model simple, our presentation removes this ability. However, because nested
dataspaces are a useful feature, and they are present in both our typed and untyped proto-
types, they warrant additional discussion.

Here, we give an outline of how to extend the type system to accommodate hierarchical
dataspaces. The operational semantics of nested dataspace systems requires non-trivial
machinery, but the semantics of an internal actor language like λ∪ds is largely the same.
The extensions to the type system are likewise straightforward. We refer the interested
reader to Garnock-Jones et. al.’s work (2016; 2017) for the operational semantics of nested
dataspace systems.

Actors communicate with one another across dataspaces using special assertion con-
structors. The assertion outbound c is pertinent to the parent of the current dataspace;
routing recognizes such assertions, in much the same way as it pays special note to interests
observe, and replicates them in the parent context. Similarly, inbound c is an assertion
from the parent dataspace pertinent to the current one. Again, routing pays special attention
to interest in such assertions, observe inbound c, replicating the interest observe c in
the parent context and wrapping received events with inbound.

To accommodate this hierarchical runtime, we must change the type syntax in three
ways. The first change to λ∪ds is the addition of expression, value, and type forms for the
new assertions. The second alteration changes the status of dataspaces; rather than being
reserved for descriptions of complete programs, dataspace is now an expression form,
akin to an actor action:

M = . . . | outbound M | inbound M | dataspace τc M

Rule T-DATASPACE changes to reflect the status of dataspaces as actor actions:

flat(τc) Γ ` M : List Actor τc τctx = ̂ds-route(τc)

Γ ` dataspace τc M : Actor τctx
T-DATASPACE

The third change concerns the metafunction ̂ds-route, which encapsulates the outbound-
and inbound-sensitive routing described above. It synthesizes a type, τctx in which the
described dataspace operates. When viewed from the parent context,

• strip-out(τ) is the type of assertions produced by the nested dataspace;
• relay-interests(τ) is the type of interests it produces; and
• strip-in(τ) is the type of assertions it expects to match stated interests.

Definition 30.
̂ds-route : Type−→ Type

̂ds-route(τ) = τout ∪ τin∪ τrelay

where τout = strip-out(τ)
τin = strip-in(τ)
τrelay = relay-interests(τ)

The strip-out, strip-in, and relay-interests metafunctions follow the same structure as
strip-obs (defined in figure 10).

ZU064-05-FPR jfp 13 May 2020 10:44

Typed Dataspace Actors 53

Definition 31.

strip-out : Type−→ Type
strip-out(Outbound τ) = τ

strip-out(?) = ?

strip-out(
⋃−→

τ) =
⋃−−−−−−−→

strip-out(τ)
strip-out(τ) = ⊥ otherwise

Definition 32.

strip-in : Type−→ Type
strip-in(Inbound τ) = τ

strip-in(?) = ?

strip-in(
⋃−→

τ) =
⋃−−−−−−→

strip-in(τ)
strip-in(τ) = ⊥ otherwise

Definition 33.

relay-interests : Type−→ Type
relay-interests(Observe (Inbound τ)) = Observe τ

relay-interests(?) = ?

relay-interests(
⋃−→

τ) =
⋃−−−−−−−−−−−→

relay-interests(τ)
relay-interests(τ) = ⊥ otherwise

All of the properties shown in sections 4.4 and 5.3 can be adapted to the system including
nested dataspaces as well.

ZU064-05-FPR jfp 13 May 2020 10:44

